Skip to content

asg017/sqlite-xsv

Repository files navigation

sqlite-xsv

A fast and performant SQLite extension for CSV files, written in Rust! Based on sqlite-loadable-rs and the wonderful csv crate.

  • Query CSVs, TSVs, and other-SVs as SQLite virtual tables
  • The "reader" interface lets you query CSVs from other data sources, such as sqlite-http
  • Builtin support for querying CSVs with gzip or zstd compression

See Introducing sqlite-xsv: The Fastest CSV Parser for SQLite (Jan 2023) for more details!

Note Nothing to do with xsv, but is based on the same csv crate. This is named sqlite-xsv to distinguish between the official SQLite CSV Virtual table and the sqlean vsv extension.

Usage

.load ./xsv0 create virtual table temp.students using csv( filename="students.csv" ); select * from temp.students; /* ┌────┬───────┬─────┬─────────┐ │ id │ name │ age │ process │ ├────┼───────┼─────┼─────────┤ │ 1 │ alex │ 10 │ .9 │ │ 2 │ brian │ 20 │ .7 │ │ 3 │ craig │ 30 │ .3 │ └────┴───────┴─────┴─────────┘ */

Provide a schema for CSVs that lack headers, or to provide types on columns.

create virtual table temp.students_no_header using csv( filename="students_no_header.csv", header=false, id text, name text, age int, ); select * from temp.students_no_header; 

Query files that are gzip'ed or compressed with zstd directly.

create virtual table temp.students_gz using csv( filename="students.csv.gz" ); select * from temp.students_gz; create virtual table temp.students_zst using csv( filename="students.csv.zst" ); select * from temp.students_zst; 

Use the csv_reader API and the fsdir() function in the SQLite CLI to read from several CSV files in one query.

create virtual table temp.students_reader using csv_reader( id integer, name text, age integer, progess real ); with files as ( select name as path from fsdir('tests/data/student_files') ) select files.path, students.* from files join students_reader(files.path) as students where files.path like '%.csv'; /* ┌────────────────────────────────┬────┬───────────┬─────┬─────────┐ │ path │ id │ name │ age │ progess │ ├────────────────────────────────┼────┼───────────┼─────┼─────────┤ │ tests/data/student_files/a.csv │ 1 │ alex │ 10 │ 0.9 │ │ tests/data/student_files/a.csv │ 2 │ adrian │ 20 │ 0.8 │ │ tests/data/student_files/a.csv │ 3 │ andres │ 30 │ 0.7 │ │ tests/data/student_files/c.csv │ 1 │ craig │ 70 │ 0.4 │ │ tests/data/student_files/c.csv │ 2 │ catherine │ 90 │ 0.5 │ │ tests/data/student_files/c.csv │ 3 │ coin │ 80 │ 0.6 │ │ tests/data/student_files/b.csv │ 1 │ brian │ 60 │ 0.1 │ │ tests/data/student_files/b.csv │ 2 │ beto │ 50 │ 0.2 │ │ tests/data/student_files/b.csv │ 3 │ brandy │ 40 │ 0.3 │ └────────────────────────────────┴────┴───────────┴─────┴─────────┘ */

Query CSVs from HTTP endpoints, with the reader API and sqlite-http. Note: Only works for CSVs that work in memory, for now.

.load ./http0 -- Reading a CSV from the wonderful LA Times COVID project -- https://github.com/datadesk/california-coronavirus-data create virtual table temp.cdph_age_reader using csv_reader( date, age text, confirmed_cases_total int, confirmed_cases_percent float, deaths_total int, deaths_percent float ); create table cdph_age as select * from temp.cdph_age_reader( http_get_body( 'https://raw.githubusercontent.com/datadesk/california-coronavirus-data/master/cdph-age.csv' ) ); select * from cdph_age limit 5; /* ┌────────────┬───────┬───────────────────────┬─────────────────────────┬──────────────┬────────────────┐ │ date │ age │ confirmed_cases_total │ confirmed_cases_percent │ deaths_total │ deaths_percent │ ├────────────┼───────┼───────────────────────┼─────────────────────────┼──────────────┼────────────────┤ │ 2023-01-03 │ 0-4 │ 371691 │ 0.034 │ 32 │ 0.0 │ │ 2023-01-03 │ 80+ │ 292252 │ 0.027 │ 37038 │ 0.378 │ │ 2023-01-03 │ 18–34 │ 3416056 │ 0.312 │ 1655 │ 0.017 │ │ 2023-01-03 │ 35–49 │ 2530259 │ 0.231 │ 6135 │ 0.063 │ │ 2023-01-03 │ 50–59 │ 1379087 │ 0.126 │ 10892 │ 0.111 │ └────────────┴───────┴───────────────────────┴─────────────────────────┴──────────────┴────────────────┘ */

Documentation

See docs.md for a full API reference.

Installing

Language Install
Python pip install sqlite-xsv PyPI
Node.js npm install sqlite-xsv npm
Deno deno.land/x/sqlite_xsv deno.land/x release
Ruby gem install sqlite-xsv Gem
Rust cargo add sqlite-xsv Crates.io
Github Release GitHub tag (latest SemVer pre-release)

The Releases page contains pre-built binaries for Linux amd64, MacOS amd64 (no arm yet), and Windows.

As a loadable extension

If you want to use sqlite-xsv as a Runtime-loadable extension, Download the xsv0.dylib (for MacOS), xsv0.so (Linux), or xsv0.dll (Windows) file from a release and load it into your SQLite environment.

Note: The 0 in the filename (xsv0.dylib/ xsv0.so/xsv0.dll) denotes the major version of sqlite-xsv. Currently sqlite-xsv is pre v1, so expect breaking changes in future versions.

For example, if you are using the SQLite CLI, you can load the library like so:

.load ./xsv0 select xsv_version(); -- v0.0.1

Or in Python, using the builtin sqlite3 module:

import sqlite3 con = sqlite3.connect(":memory:") con.enable_load_extension(True) con.load_extension("./xsv0") print(con.execute("select xsv_version()").fetchone()) # ('v0.0.1',)

Or in Node.js using better-sqlite3:

const Database = require("better-sqlite3"); const db = new Database(":memory:"); db.loadExtension("./xsv0"); console.log(db.prepare("select xsv_version()").get()); // { 'xsv_version()': 'v0.0.1' }

For Datasette, it is currently NOT recommended to load sqlite-xsv in public Datasette instances. This is because the SQL API reads files from the filesystem, which is dangerous on Datasette instances. This may be changed in future version of `sqlite-xsv.

About

the fastest CSV SQLite extension, written in Rust

Topics

Resources

License

Apache-2.0, MIT licenses found

Licenses found

Apache-2.0
LICENSE-APACHE
MIT
LICENSE-MIT

Stars

Watchers

Forks