Skip to content
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
183 changes: 183 additions & 0 deletions contents/split-operator_method/code/c++/split_op.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
#include <complex>
#include <vector>
#include <iostream>
#include <cstring>
#include <fstream>

// Using fftw3 library.
#include <fftw3.h>

struct Params {
Params(double _xmax, unsigned int _res, double _dt, unsigned int _timesteps, bool im) {
xmax = _xmax;
res = _res;
dt = _dt;
timesteps = _timesteps;
dx = 2.0 * xmax / res;
dk = M_PI / xmax;
im_time = im;

for (size_t i = 0; i < res; ++i) {
x.push_back(xmax / res - xmax + i * (2.0 * xmax / res));
if (i < res / 2) {
k.push_back(i * M_PI / xmax);
} else {
k.push_back((static_cast<double>(i) - res) * M_PI / xmax);
}
}
}

double xmax;
unsigned int res;
double dt;
unsigned int timesteps;
double dx;
std::vector<double> x;
double dk;
std::vector<double> k;
bool im_time;
};

struct Operators {
public:
Operators(Params &par, double voffset,
double wfcoffset) {
size = par.res;

for (size_t i = 0; i < size; ++i) {
v.emplace_back(0.5 * pow(par.x[i] - voffset, 2));
wfc.emplace_back(exp(-pow(par.x[i] - wfcoffset, 2) / 2.0));

if (par.im_time) {
ke.emplace_back(exp(-0.5 * par.dt * pow(par.k[i], 2)));
pe.emplace_back(exp(-0.5 * par.dt * v[i]));
} else {
ke.emplace_back(exp(-0.5 * par.dt * pow(par.k[i], 2) * std::complex(0.0, 1.0)));
pe.emplace_back(exp(-0.5 * par.dt * v[i] * std::complex(0.0, 1.0)));
}
}
}

size_t size;
std::vector<std::complex<double>> v;
std::vector<std::complex<double>> pe;
std::vector<std::complex<double>> ke;
std::vector<std::complex<double>> wfc;
};

void fft(std::vector<std::complex<double>> x, int n, bool inverse) {
std::complex<double> y[n];
memset(y, 0, sizeof(y));
fftw_plan p;

p = fftw_plan_dft_1d(n, reinterpret_cast<fftw_complex*>(x.data()), reinterpret_cast<fftw_complex*>(y),
(inverse ? FFTW_BACKWARD : FFTW_FORWARD), FFTW_ESTIMATE);

fftw_execute(p);
fftw_destroy_plan(p);

for (size_t i = 0; i < n; ++i) {
x[i] = y[i] / sqrt(static_cast<double>(n));
}
}

void split_op(Params &par, Operators &opr) {
double density[opr.size];

for (size_t i = 0; i < par.timesteps; ++i) {
for (size_t j = 0; j < opr.size; ++j) {
opr.wfc[j] *= opr.pe[j];
}

fft(opr.wfc, opr.size, false);

for (size_t j = 0; j < opr.size; ++j) {
opr.wfc[j] *= opr.ke[j];
}

fft(opr.wfc, opr.size, true);

for (size_t j = 0; j < opr.size; ++j) {
opr.wfc[j] *= opr.pe[j];
}

for (size_t j = 0; j < opr.size; ++j) {
density[j] = pow(abs(opr.wfc[j]), 2);
}

if (par.im_time) {
double sum = 0;

for (size_t j = 0; j < opr.size; ++j) {
sum += density[j];
}

sum *= par.dx;

for (size_t j = 0; j < opr.size; ++j) {
opr.wfc[j] /= sqrt(sum);
}
}

// Writing data into a file in the format of:
// index, density, real potential.
char filename[256];
sprintf(filename, "output%lu.dat", i);
std::ofstream fstream;
fstream.open(filename, std::fstream::out);

char buffer[1023];
if (!fstream.fail()) {
for (int i = 0; i < opr.size; ++i) {
snprintf(buffer, 1023, "%d\t%f\t%f\n", i, density[i], real(opr.v[i]));
fstream.write(buffer, strlen(buffer));
}
}

fstream.close();
}
}

double calculate_energy(Params par, Operators opr) {
std::vector<std::complex<double>> wfc_r = std::vector(opr.wfc);
std::vector<std::complex<double>> wfc_k = std::vector(opr.wfc);
std::vector<std::complex<double>> wfc_c;
fft(wfc_k, opr.size, false);

for (size_t i = 0; i < opr.size; ++i) {
wfc_c[i] = conj(wfc_r[i]);
}

std::vector<std::complex<double>> energy_k;
std::vector<std::complex<double>> energy_r;

for (size_t i = 0; i < opr.size; ++i) {
energy_k[i] = wfc_k[i] * pow(std::complex(par.k[i], 0.0), 2);
}

fft(energy_k, opr.size, true);

for (size_t i = 0; i < opr.size; ++i) {
energy_k[i] *= 0.5 * wfc_c[i];
energy_r[i] = wfc_c[i] * opr.v[i] * wfc_r[i];
}

double energy_final = 0;

for (size_t i = 0; i < opr.size; ++i) {
energy_final += real(energy_k[i] + energy_r[i]);
}

return energy_final * par.dx;
}

int main() {
Params par = Params(5.0, 256, 0.05, 100, true);
Operators opr = Operators(par, 0.0, -1.0);

split_op(par, opr);

printf("The energy is %f\n", calculate_energy(par, opr));

return 0;
}
8 changes: 8 additions & 0 deletions contents/split-operator_method/split-operator_method.md
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,8 @@ Regardless, we first need to set all the initial parameters, including the initi
{% sample lang="c" %}
[import:11-21, lang:"c_cpp"](code/c/split_op.c)
[import:52-73, lang:"c_cpp"](code/c/split_op.c)
{% sample lang="cpp" %}
[import:10-39, lang:"c_cpp"](code/c++/split_op.cpp)
{% sample lang="py" %}
[import:11-30, lang:"python"](code/python/split_op.py)
{% sample lang="hs" %}
Expand All @@ -121,6 +123,8 @@ Afterwards, we turn them into operators:
{% sample lang="c" %}
[import:23-29, lang:"c_cpp"](code/c/split_op.c)
[import:75-96, lang:"c_cpp"](code/c/split_op.c)
{% sample lang="cpp" %}
[import:41-66, lang:"c_cpp"](code/c++/split_op.cpp)
{% sample lang="py" %}
[import:33-54, lang:"python"](code/python/split_op.py)
{% sample lang="hs" %}
Expand All @@ -140,6 +144,8 @@ The final step is to do the iteration, itself.
[import:65-112, lang:"julia"](code/julia/split_op.jl)
{% sample lang="c" %}
[import:98-148, lang:"c_cpp"](code/c/split_op.c)
{% sample lang="cpp" %}
[import:68-172, lang:"c_cpp"](code/c++/split_op.cpp)
{% sample lang="py" %}
[import:57-95, lang:"python"](code/python/split_op.py)
{% sample lang="hs" %}
Expand All @@ -165,6 +171,8 @@ Checking to make sure your code can output the correct energy for a harmonic tra
[import, lang:"julia"](code/julia/split_op.jl)
{% sample lang="c" %}
[import, lang:"c_cpp"](code/c/split_op.c)
{% sample lang="cpp" %}
[import, lang:"c_cpp"](code/c++/split_op.cpp)
{% sample lang="py" %}
[import:5-127, lang:"python"](code/python/split_op.py)
{% sample lang="hs" %}
Expand Down