Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Remove shortening logic for GAIL when demo small
Update typing
  • Loading branch information
Ervin Teng committed Mar 7, 2020
commit 36d0f3e2bc070708ccee447da5105f4672e39fa6
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def __init__(
}
self.has_updated = False

def evaluate_batch(self, mini_batch: Dict[str, np.array]) -> RewardSignalResult:
def evaluate_batch(self, mini_batch: AgentBuffer) -> RewardSignalResult:
feed_dict: Dict[tf.Tensor, Any] = {
self.policy.batch_size_ph: len(mini_batch["actions"]),
self.policy.sequence_length_ph: self.policy.sequence_length,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import numpy as np

from mlagents.trainers.components.reward_signals import RewardSignal, RewardSignalResult
from mlagents.trainers.buffer import AgentBuffer


class ExtrinsicRewardSignal(RewardSignal):
Expand All @@ -16,6 +17,6 @@ def check_config(
param_keys = ["strength", "gamma"]
super().check_config(config_dict, param_keys)

def evaluate_batch(self, mini_batch: Dict[str, np.array]) -> RewardSignalResult:
def evaluate_batch(self, mini_batch: AgentBuffer) -> RewardSignalResult:
env_rews = np.array(mini_batch["environment_rewards"], dtype=np.float32)
return RewardSignalResult(self.strength * env_rews, env_rews)
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ def __init__(
"Policy/GAIL Expert Estimate": "gail_expert_estimate",
}

def evaluate_batch(self, mini_batch: Dict[str, np.array]) -> RewardSignalResult:
def evaluate_batch(self, mini_batch: AgentBuffer) -> RewardSignalResult:
feed_dict: Dict[tf.Tensor, Any] = {
self.policy.batch_size_ph: len(mini_batch["actions"]),
self.policy.sequence_length_ph: self.policy.sequence_length,
Expand Down Expand Up @@ -110,16 +110,9 @@ def prepare_update(
:param mini_batch_policy: A mini batch of trajectories sampled from the current policy
:return: Feed_dict for update process.
"""
max_num_experiences = min(
len(mini_batch["actions"]), self.demonstration_buffer.num_experiences
)
# If num_sequences is less, we need to shorten the input batch.
for key, element in mini_batch.items():
mini_batch[key] = element[:max_num_experiences]

# Get batch from demo buffer
# Get batch from demo buffer. Even if demo buffer is smaller, we sample with replacement
mini_batch_demo = self.demonstration_buffer.sample_mini_batch(
len(mini_batch["actions"]), 1
mini_batch.num_experiences, 1
)

feed_dict: Dict[tf.Tensor, Any] = {
Expand Down