๐ 5G Edge Computing Showcase Real-time AI orchestration at telecom edge with Strands agent swarms Live Demo
Problem: Todayโs AI systems trade speed for intelligence. Edge devices process fast but lack complexity; the cloud processes deeply but adds latency. For real-time applicationsโautonomous vehicles, industrial control, or competitive gamingโmilliseconds matter.
Solution: EdgeMind brings intelligence to the edge. It deploys Strands-based multi-agent swarms directly at 5G MEC (Multi-access Edge Computing) sites. These agents monitor local metrics, detect performance degradation, and self-orchestrate routing and resource decisionsโall without cloud dependence.
- Threshold-Based Orchestration: Monitors latency, CPU/GPU load, and queue depth to trigger intelligent swarm responses
- MEC-Native Intelligence: Strands agents deployed directly at telecom edge sites near RAN controllers
- Swarm Coordination: Agents collaborate across MEC sites to balance load without cloud involvement
- Real-Time Decision Making: Sub-100ms routing decisions for time-critical applications
User Devices (5G) โ MEC Site A (Primary) โ Swarm Coordination โ MEC Sites B & C (Fallback) โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ MEC Site A (5G Radio Tower) โ โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โ โ Complete Strands Agent Set โ โ โ โ โข Orchestrator โข Load Balancer โ โ โ โ โข Resource Mon โข Decision Coordinator โ โ โ โ โข Cache Manager โ โ โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โ โ Local MCP Tools โ โ โ โ โข metrics_monitor โข container_ops โ โ โ โ โข inference_engine โข telemetry_logger โ โ โ โ โข memory_sync โ โ โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ AWS Cloud (Passive Observer) - AgentCore Memory Only - AgentCore Orchestration Only - Real-time NPC dialogue: Device SLM for instant responses
- Game state analysis: MEC swarm coordination for regional multiplayer
- Performance analytics: Cloud observability (passive)
- Collision detection: Device SLM for ultra-low latency safety
- Traffic coordination: MEC orchestrator manages regional traffic flow
- Fleet analytics: Cloud monitoring and long-term insights
- Sensor processing: Device SLM for immediate responses
- City-wide coordination: MEC swarm balances infrastructure load
- Urban planning: Cloud analytics from aggregated MEC data
| Agent | Role | Deployment |
|---|---|---|
| Orchestrator Agent | Threshold monitoring & swarm triggering | MEC Site Controller |
| Load Balancer Agent | Distribute workload across MEC sites | Strands Swarm Member |
| Resource Monitor Agent | Track CPU/GPU/latency metrics | Strands Swarm Member |
| Decision Coordinator Agent | Coordinate swarm consensus | Strands Swarm Member |
| Cache Manager Agent | Local model and data caching | Strands Swarm Member |
- Edge Agents: Strands framework with Claude 3.5 Sonnet integration
- AI Model: Claude API for real agent coordination (optional for demo)
- MEC Infrastructure: Docker/Kubernetes on edge compute nodes
- Dashboard: Streamlit with real-time simulation and dual-mode operation
- Orchestration: Threshold-based swarm coordination with MCP tools
- AWS Integration: AgentCore Memory + Orchestration only
- Communication: Direct MEC-to-MEC networking
For full Strands agent experience:
- Get API key: Anthropic Console
- Create
.envfile:ANTHROPIC_API_KEY=your-key-here - Test agents:
python tests/run_all_tests.py
Dashboard works without API key in simulation mode!
- Sub-100ms decision making for real-time applications
- Autonomous load balancing without cloud dependency
- 99.9% availability through MEC site redundancy
- Intelligent swarm coordination adapting to network conditions
# Clone repository git clone https://github.com/yourusername/mec-inference-routing.git cd mec-inference-routing # Install dependencies pip install -r requirements.txt # Launch the live dashboard streamlit run app.py๐ฏ Try the Dashboard:
- Normal Operation: See healthy MEC sites (green dots)
- Switch to "Threshold Breach": Watch swarm coordination activate
- Try "Failover Test": See how system handles MEC site failure
- Adjust thresholds: Test different latency/CPU limits
The dashboard shows real-time simulation of your 5G-MEC orchestration system!
mec-inference-routing/ โโโ app.py # Streamlit dashboard entry point โโโ README.md โโโ requirements.txt # Dependencies โโโ generated-diagrams/ # Architecture diagrams (Mermaid) โ โโโ mec_orchestration_architecture.mmd โ โโโ threshold_breach_sequence.mmd โโโ src/ โ โโโ agents/ # 5 Strands agents (Orchestrator, Load Balancer, etc.) โ โโโ swarm/ # Swarm coordination logic โ โโโ mcp_tools/ # MCP tools (metrics, containers, inference, telemetry) โ โโโ dashboard/ # Streamlit UI components with dual-mode support โ โโโ data/ # Data generation and simulation โ โโโ device/ # Device layer simulation โ โโโ orchestrator/ # Threshold monitoring and orchestration โโโ architecture/ # Consolidated architecture documentation โ โโโ ARCHITECTURE_GUIDE.md # Comprehensive architecture guide โ โโโ architecture_decision_records.md # ADRs and design decisions โ โโโ enterprise_aws_deployment.md # AWS deployment architecture โโโ docs/ # Enhanced demo scenarios and technical specs โโโ tests/ # Comprehensive agent and swarm tests โโโ demo_data/ # Demo data and session management - Real 5G-MEC Architecture: Designed for deployment at radio towers
- Strands Agent Swarms: 5 specialized agents per MEC site
- Sub-100ms Performance: Aggressive latency targets for real-time apps
- Multi-Site Coordination: Intelligent failover between MEC sites
- Enterprise AWS Integration: Only 2 services (AgentCore Memory + Orchestration)
- Dual-Mode Operation: Mock Data Mode (no API key) vs Real Strands Agents Mode (with Claude API)
- Interactive Dashboard: Real-time MEC orchestration simulation
- Enhanced Demo Scenarios: Gaming, Automotive, Healthcare, IoT use cases
- Automated Demo Mode: 15-second scenario transitions with start/stop controls
- Threshold Testing: Watch swarm activation during overload
- Failover Scenarios: See how system handles MEC site failures
- Performance Metrics: Track latency, CPU, GPU, queue depth with scenario-specific patterns
- Agent Activity: Live stream of Strands agent coordination and MCP tool calls
The Streamlit dashboard simulates real-time orchestration behavior at 5G MEC sites.
๐ฏ Top Left โ Real-Time Metrics
- Latency (ms) โ target <100 ms
- CPU Usage โ trigger >80%
- GPU Usage โ monitoring utilization
- Queue Depth โ request backlog โ Displays live performance indicators from simulated MEC nodes.
๐ค Bottom Left โ Swarm Visualization
- Green: Healthy MEC sites
- Red: Overloaded sites
- Gray: Failed sites
- Lines: MEC interconnections โ Visualizes agent coordination and failover behavior.
๐จ Top Right โ Agent Activity Stream
- ๐ต Info: Normal operations
- ๐ข Success: Consensus achieved
- ๐ก Warning: Threshold breach
- ๐ด Error: System failure โ Shows live Strands agent events.
๐ Bottom Right โ Performance Analytics
- Blue line: Real latency
- Red line: 100 ms threshold โ Demonstrates sub-100 ms orchestration goal.
๐ Sidebar Controls
- Dashboard Mode: Mock Data Mode vs Real Strands Agents Mode
- Demo Scenarios: Gaming, Automotive, Healthcare, Normal
- Automated Demo: 15-second scenario transitions with
โถ๏ธ Start/โน๏ธ Stop - Operation Mode: Normal / Threshold Breach / Swarm Active / Failover Test
- Active MEC Sites toggle
- Adjustable Latency/CPU thresholds
๐งช Enhanced Demo Scenarios
- โThreshold Breachโ: triggers swarm response
- โSwarm Activeโ: shows coordination logs
- โFailover Testโ: disables one MEC site โ Replicates telecom-grade orchestration under stress.
Scenario Types:
- ๐ฎ Gaming: High GPU usage (85-95%), multiplayer synchronization, NPC AI processing
- ๐ Automotive: Ultra-low latency (<30ms), safety-critical systems, V2X communication
- ๐ฅ Healthcare: Patient monitoring (50-200 patients), HIPAA compliance, medical alerts
- ๐ Normal: Balanced resource utilization and standard MEC operations
๐ฌ Automated Demo Features
- Auto Demo Mode: Cycles through all scenarios every 15 seconds
- Scenario-Specific Metrics: Context-aware thresholds and performance indicators
- Enhanced Visualizations: Scenario-specific icons, colors, and coordination patterns
- Real-Time Integration: Works seamlessly in both Mock and Real agent modes โ Demonstrates comprehensive MEC orchestration across diverse use cases.
The next phase extends toward ICEO, where each MEC site acts as a learning agent within a distributed intelligence fabric. Planned research and implementation:
- Build multi-MEC simulation for latency and consensus testing
- Add reinforcement-based learning between edge and cloud layers
- Formalize and publish ICEO as a framework for autonomous 5G orchestration
- Architecture Guide: Comprehensive system architecture, agent design, deployment patterns, and key design decisions
- Enhanced Demo Scenarios: Detailed demo scenarios for gaming, automotive, healthcare, and IoT
- Tests: Comprehensive test suite for agents, swarm coordination, and integration scenarios
- Generated Diagrams: Mermaid architecture diagrams and visualizations
Showcasing the future of 5G-MEC intelligence - where real decisions happen at the edge, not in the cloud

