Skip to content

RRRCat/scorecardpy

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

73 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

scorecardpy

PyPI release Downloads PyPI version

This package is python version of R package scorecard. Its goal is to make the development of traditional credit risk scorecard model easier and efficient by providing functions for some common tasks.

  • data partition (split_df)
  • variable selection (iv, var_filter)
  • weight of evidence (woe) binning (woebin, woebin_plot, woebin_adj, woebin_ply)
  • scorecard scaling (scorecard, scorecard_ply)
  • performance evaluation (perf_eva, perf_psi)

Installation

  • Install the release version of scorecardpy from PYPI with:
pip install scorecardpy 
  • Install the latest version of scorecardpy from github with:
pip install git+git://github.com/shichenxie/scorecardpy.git 

Example

This is a basic example which shows you how to develop a common credit risk scorecard:

# Traditional Credit Scoring Using Logistic Regression import scorecardpy as sc # data prepare ------ # load germancredit data dat = sc.germancredit() # filter variable via missing rate, iv, identical value rate dt_s = sc.var_filter(dat, y="creditability") # breaking dt into train and test train, test = sc.split_df(dt_s, 'creditability').values() # woe binning ------ bins = sc.woebin(dt_s, y="creditability") # sc.woebin_plot(bins) # binning adjustment # # adjust breaks interactively # breaks_adj = sc.woebin_adj(dt_s, "creditability", bins)  # # or specify breaks manually breaks_adj = { 'age.in.years': [26, 35, 40], 'other.debtors.or.guarantors': ["none", "co-applicant%,%guarantor"] } bins_adj = sc.woebin(dt_s, y="creditability", breaks_list=breaks_adj) # converting train and test into woe values train_woe = sc.woebin_ply(train, bins_adj) test_woe = sc.woebin_ply(test, bins_adj) y_train = train_woe.loc[:,'creditability'] X_train = train_woe.loc[:,train_woe.columns != 'creditability'] y_test = test_woe.loc[:,'creditability'] X_test = test_woe.loc[:,train_woe.columns != 'creditability'] # logistic regression ------ from sklearn.linear_model import LogisticRegression lr = LogisticRegression(penalty='l1', C=0.9, solver='saga', n_jobs=-1) lr.fit(X_train, y_train) # lr.coef_ # lr.intercept_ # predicted proability train_pred = lr.predict_proba(X_train)[:,1] test_pred = lr.predict_proba(X_test)[:,1] # performance ks & roc ------ train_perf = sc.perf_eva(y_train, train_pred, title = "train") test_perf = sc.perf_eva(y_test, test_pred, title = "test") # score ------ card = sc.scorecard(bins_adj, lr, X_train.columns) # credit score train_score = sc.scorecard_ply(train, card, print_step=0) test_score = sc.scorecard_ply(test, card, print_step=0) # psi sc.perf_psi( score = {'train':train_score, 'test':test_score}, label = {'train':y_train, 'test':y_test} )

About

Scorecard Development in python, 评分卡

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%