Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 9 additions & 10 deletions lectures/olg.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ jupytext:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.14.5
jupytext_version: 1.15.2
kernelspec:
display_name: Python 3 (ipykernel)
language: python
Expand Down Expand Up @@ -294,12 +294,17 @@ def capital_demand(R, α):
return (α/R)**(1/(1-α))
```

```{code-cell} ipython3
def capital_supply(R, β, w):
R = np.ones_like(R)
return R * (β / (1 + β)) * w
```

The next figure plots the supply of capital, as in [](saving_log_2_olg), as well as the demand for capital, as in [](aggregate_demand_capital_olg), as functions of the interest rate $R_{t+1}$.

(For the special case of log utility, supply does not depend on the interest rate, so we have a constant function.)

```{code-cell} ipython3

R_vals = np.linspace(0.3, 1)
α, β = 0.5, 0.9
w = 2.0
Expand All @@ -308,7 +313,7 @@ fig, ax = plt.subplots()

ax.plot(R_vals, capital_demand(R_vals, α),
label="aggregate demand")
ax.plot(R_vals, np.ones_like(R_vals) * (β / (1 + β)) * w,
ax.plot(R_vals, capital_supply(R_vals, β, w),
label="aggregate supply")

ax.set_xlabel("$R_{t+1}$")
Expand Down Expand Up @@ -391,7 +396,6 @@ That is,
Let's redo our plot above but now inserting the equilibrium quantity and price.

```{code-cell} ipython3

R_vals = np.linspace(0.3, 1)
α, β = 0.5, 0.9
w = 2.0
Expand All @@ -400,7 +404,7 @@ fig, ax = plt.subplots()

ax.plot(R_vals, capital_demand(R_vals, α),
label="aggregate demand")
ax.plot(R_vals, np.ones_like(R_vals) * (β / (1 + β)) * w,
ax.plot(R_vals, capital_supply(R_vals, β, w),
label="aggregate supply")

R_e = equilibrium_R_log_utility(α, β, w)
Expand Down Expand Up @@ -452,7 +456,6 @@ $$
g(k) := \frac{\beta}{1+\beta} (1-\alpha)(k)^{\alpha}
$$


```{code-cell} ipython3
def k_update(k, α, β):
return β * (1 - α) * k**α / (1 + β)
Expand Down Expand Up @@ -627,7 +630,6 @@ def savings_crra(w, R, model):
```

```{code-cell} ipython3

R_vals = np.linspace(0.3, 1)
model = create_olg_model()
w = 2.0
Expand Down Expand Up @@ -760,7 +762,6 @@ ax.set_ylabel('$k_{t+1}$', fontsize=12)
plt.show()
```


```{solution-end}
```

Expand Down Expand Up @@ -821,7 +822,6 @@ k_star = optimize.newton(h, 0.2, args=(model,))
print(f"k_star = {k_star}")
```


```{solution-end}
```

Expand All @@ -846,7 +846,6 @@ Use initial conditions for $k_0$ of $0.001, 1.2, 2.6$ and time series length 10.

Let's define the constants and three distinct intital conditions


```{code-cell} ipython3
ts_length = 10
k0 = np.array([0.001, 1.2, 2.6])
Expand Down