Traditional web scrapers break when websites update their HTML structure. Pangolin adapts automatically.
- ✅ Zero Maintenance — Our AI detects page changes and updates parsers automatically
- ✅ 99.9% Uptime — Enterprise-grade infrastructure with automatic retry logic
- ✅ No Proxies Needed — Built-in anti-bot bypass (CAPTCHA, rate limits, fingerprinting)
- ✅ Multi-Format Output — Get data as JSON, HTML, or Markdown — whatever your app needs
- ✅ Real-Time Data — Fresh product prices, inventory, reviews in milliseconds
Perfect for: E-commerce sellers, price monitoring tools, market research, product analytics, and dropshipping businesses.
For Open Source Community:
|
|
🌏 International Users: Prefer email or Telegram? Contact csm@pangolinfo.com
🇨🇳 中国用户: 添加微信 Pangolin-Scraper 备注「GitHub免费额度」
Python:
import requests API_KEY = "your_free_api_key_here" response = requests.post( "http://scrapeapi.pangolinfo.com/api/v1/scrape", headers={"Authorization": f"Bearer {API_KEY}"}, json={ "url": "https://www.amazon.com/dp/B0DYTF8L2W", "parserName": "amzProductDetail", "formats": ["json"] } ) print(response.json())JavaScript:
const response = await fetch("http://scrapeapi.pangolinfo.com/api/v1/scrape", { method: "POST", headers: { "Authorization": `Bearer YOUR_API_KEY`, "Content-Type": "application/json" }, body: JSON.stringify({ url: "https://www.amazon.com/dp/B0DYTF8L2W", parserName: "amzProductDetail", formats: ["json"] }) }); const data = await response.json(); console.log(data);cURL:
curl -X POST http://scrapeapi.pangolinfo.com/api/v1/scrape \ -H "Authorization: Bearer YOUR_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "url": "https://www.amazon.com/dp/B0DYTF8L2W", "parserName": "amzProductDetail", "formats": ["json"] }'{ "asin": "B0DYTF8L2W", "title": "Product Title Here", "price": 29.99, "rating": 4.5, "reviews": 1234, "imageUrl": "https://...", "inStock": true, ... }🎉 That's it! You're now scraping e-commerce data with zero infrastructure setup.
| Feature | Open Source Parser | Free API (200 calls) | Paid API |
|---|---|---|---|
| Parser Template Code | ✅ Full access (Go) | ❌ | ❌ |
| Monthly API Calls | ∞ (self-hosted) | ✅ 200 free | ✅ Custom volume |
| Supported Platforms | Amazon search only | ✅ All platforms | ✅ All platforms |
| Auto Page Structure Updates | 🔧 Manual updates | ✅ Automatic | ✅ Automatic |
| Anti-Bot Handling | 🔧 DIY (proxies, CAPTCHA) | ✅ Built-in | ✅ Advanced |
| Data Formats | JSON only | JSON, HTML, Markdown | JSON, HTML, Markdown |
| Support | 💬 Community (GitHub) | ✅ Email support | ✅ Priority support |
| Uptime SLA | N/A (self-hosted) | 99% | 99.9% |
| Use Case | Learning, testing | Small projects | Production apps |
💡 Recommendation:
- Learning web scraping? → Start with open source parser
- Building a side project? → Use free API tier
- Running a business? → Upgrade to paid for reliability
| Amazon | Walmart | Shopify | eBay |
- Product Details: ASIN, title, price, images, variants
- Rankings: Best Sellers Rank, category position
- Reviews: Rating, review count, top reviews
- Seller Info: FBA/FBM, seller name, shipping
- Inventory: Stock status, availability date
Similar comprehensive data extraction for each platform.
📖 Full API Documentation: https://docs.pangolinfo.com/api-reference
# Monitor competitor prices daily products = ["B08N5WRWNW", "B08L5VFJ2C", "B07ZPKN6YR"] for asin in products: data = scrape_amazon_product(asin) if data['price'] < my_price: send_alert(f"Competitor lowered price: {data['title']}")Result: Stay competitive by adjusting prices based on real-time market data.
// Analyze product trends in a category const category = "Electronics > Headphones"; const results = await scrape_amazon_search(category, pages=10); const avgPrice = results.reduce((sum, p) => sum + p.price, 0) / results.length; const topBrands = getMostFrequent(results.map(p => p.brand));Result: Generate market reports with pricing trends, top brands, and customer sentiment.
# Build a price drop notification service def check_wishlist(user_id): wishlist = get_user_wishlist(user_id) for item in wishlist: current_price = scrape_product(item.url)['price'] if current_price < item.target_price: send_email(user_id, f"Price drop alert: {item.name}")Result: Create a valuable service without managing scraping infrastructure.
# Collect training data for price prediction models import pandas as pd data = [] for asin in asin_list: product = scrape_amazon_product(asin) data.append({ 'title': product['title'], 'price': product['price'], 'rating': product['rating'], 'reviews': product['reviews'], 'category': product['category'] }) df = pd.DataFrame(data) df.to_csv('amazon_products.csv')Result: Build ML models with clean, structured e-commerce data.