- Notifications
You must be signed in to change notification settings - Fork 3.1k
[Trainer] Add embedding trainer #9608
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
wawltor merged 1 commit into PaddlePaddle:develop from DesmonDay:add_embedding_trainer_only Dec 11, 2024
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,65 @@ | ||
| # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| | ||
| from typing import List, Optional | ||
| | ||
| import paddle | ||
| import paddle.nn as nn | ||
| | ||
| | ||
| class SimpleContrastiveLoss(nn.Layer): | ||
| def __init__(self, embedding_temperature: float = 0.02): | ||
| super().__init__() | ||
| self.embedding_temperature = embedding_temperature | ||
| self.cross_entropy = nn.CrossEntropyLoss(reduction="mean") | ||
| | ||
| def forward(self, q_reps, p_reps): | ||
| scores = paddle.matmul(q_reps, p_reps.transpose([1, 0])) | ||
| scores = scores / self.embedding_temperature | ||
| | ||
| group_size = p_reps.shape[0] // q_reps.shape[0] | ||
| batch_size = q_reps.shape[0] | ||
| | ||
| target = paddle.arange(batch_size, dtype="int64") | ||
| target = target * group_size | ||
| | ||
| loss = self.cross_entropy(scores, target) | ||
| return loss | ||
| | ||
| | ||
| class MatryoshkaContrastiveLoss(nn.Layer): | ||
| def __init__(self, embedding_temperature: float = 0.02, embedding_matryoshka_dims: Optional[List[int]] = None): | ||
| super().__init__() | ||
| self.embedding_temperature = embedding_temperature | ||
| if embedding_matryoshka_dims is None: | ||
| self.embedding_matryoshka_dims = [] | ||
| else: | ||
| self.embedding_matryoshka_dims = embedding_matryoshka_dims | ||
| self.loss_fn = SimpleContrastiveLoss(embedding_temperature) | ||
| | ||
| def forward(self, q_reps, p_reps): | ||
| if len(self.embedding_matryoshka_dims) > 0: | ||
| loss = 0.0 | ||
| for dim in self.embedding_matryoshka_dims: | ||
| reduced_q_reps = q_reps[:, :dim] | ||
| reduced_q_reps = nn.functional.normalize(reduced_q_reps, axis=-1) | ||
| | ||
| reduced_p_reps = p_reps[:, :dim] | ||
| reduced_p_reps = nn.functional.normalize(reduced_p_reps, axis=-1) | ||
| | ||
| dim_loss = self.loss_fn(reduced_q_reps, reduced_p_reps) | ||
| loss += dim_loss | ||
| else: | ||
| loss = self.loss_fn(q_reps, p_reps) | ||
| return loss |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,51 @@ | ||
| # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| | ||
| import paddle | ||
| from paddle.distributed import fleet | ||
| | ||
| | ||
| def dist_gather_tensor_with_gradient(tensor): | ||
| if tensor is None: | ||
| return None | ||
| | ||
| if paddle.distributed.get_world_size() <= 1: | ||
| return tensor | ||
| | ||
| hcg = fleet.get_hybrid_communicate_group() | ||
| sharding_group = hcg.get_sharding_parallel_group() | ||
| sharding_rank = sharding_group.rank | ||
| data_group = hcg.get_data_parallel_group() | ||
| data_rank = data_group.rank | ||
| | ||
| if sharding_group.nranks == 1 and data_group.nranks == 1: | ||
| return tensor | ||
| | ||
| if sharding_group.nranks > 1: | ||
| all_tensors = [] | ||
| paddle.distributed.all_gather(all_tensors, tensor.contiguous(), group=sharding_group) | ||
| all_tensors[sharding_rank] = tensor | ||
| all_tensors = paddle.concat(all_tensors, axis=0) | ||
| else: | ||
| all_tensors = tensor | ||
| | ||
| if data_group.nranks > 1: | ||
| final_tensors = [] | ||
| paddle.distributed.all_gather(final_tensors, all_tensors.contiguous(), group=data_group) | ||
| final_tensors[data_rank] = all_tensors | ||
| final_tensors = paddle.concat(final_tensors, axis=0) | ||
| else: | ||
| final_tensors = all_tensors | ||
| | ||
| return final_tensors | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,181 @@ | ||
| # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| | ||
| from contextlib import nullcontext | ||
| | ||
| import paddle | ||
| from paddle.base import core | ||
| from paddle.distributed import fleet | ||
| | ||
| from paddlenlp.trainer import Trainer | ||
| from paddlenlp.transformers.contrastive_loss import ( | ||
| MatryoshkaContrastiveLoss, | ||
| SimpleContrastiveLoss, | ||
| ) | ||
| from paddlenlp.transformers.embedding_utils import dist_gather_tensor_with_gradient | ||
| | ||
| __all__ = ["EmbeddingTrainer"] | ||
| | ||
| | ||
| class EmbeddingTrainer(Trainer): | ||
| def __init__(self, model_args, **kwargs): | ||
| super().__init__(**kwargs) | ||
| | ||
| self.model_args = model_args | ||
| Contributor There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 最好加一个 loss type之类的字段。我看zhangjie那边还需要加inf-cl的loss | ||
| self.embedding_negatives_cross_device = model_args.embedding_negatives_cross_device | ||
| self.accum_data = [] | ||
| self.accum_freq = 0 | ||
| self.accum_q_features = [] | ||
| self.accum_p_features = [] | ||
| self.accum_rng_states = {} | ||
| self.accum_rng_states["cpu"] = [] | ||
| self.accum_rng_states["cuda"] = [] | ||
| self.accum_rng_states["hybrid"] = [] | ||
| | ||
| if model_args.embedding_matryoshka_dims is not None and len(model_args.embedding_matryoshka_dims) > 0: | ||
| self.loss_fn = MatryoshkaContrastiveLoss( | ||
| model_args.embedding_temperature, model_args.embedding_matryoshka_dims | ||
| ) | ||
| else: | ||
| self.loss_fn = SimpleContrastiveLoss(model_args.embedding_temperature) | ||
| | ||
| def clear_memory(self): | ||
| self.accum_q_features.clear() | ||
| self.accum_p_features.clear() | ||
| paddle.device.cuda.empty_cache() | ||
| | ||
| def clear_state(self): | ||
| self.accum_data.clear() | ||
| self.accum_rng_states["cpu"].clear() | ||
| self.accum_rng_states["cuda"].clear() | ||
| self.accum_rng_states["hybrid"].clear() | ||
| self.accum_freq = 0 | ||
| | ||
| @paddle.no_grad() | ||
| def forward_no_grad(self, model, inputs): | ||
| # Step1: graph-less forward | ||
| self.accum_data.append(inputs) | ||
| inputs = self._prepare_inputs(inputs) | ||
| with self.autocast_smart_context_manager(): | ||
| # collect rand states | ||
| self.accum_rng_states["cpu"].append(paddle.framework.core.default_cpu_generator().get_state()) | ||
| self.accum_rng_states["cuda"].append(paddle.get_rng_state()) | ||
| if self.args.use_hybrid_parallel: | ||
| self.accum_rng_states["hybrid"].append( | ||
| fleet.meta_parallel.get_rng_state_tracker().get_states_tracker() | ||
| ) | ||
| | ||
| query_reps, passage_reps = model(**inputs, return_encode=True) | ||
| | ||
| if self.embedding_negatives_cross_device: | ||
| query_reps = dist_gather_tensor_with_gradient(query_reps) | ||
| passage_reps = dist_gather_tensor_with_gradient(passage_reps) | ||
| | ||
| self.accum_q_features.append(query_reps) | ||
| self.accum_p_features.append(passage_reps) | ||
| | ||
| self.accum_freq += 1 | ||
| | ||
| def get_current_rng_state(self): | ||
| return { | ||
| "cpu": [paddle.framework.core.default_cpu_generator().get_state()], | ||
| "cuda": [paddle.get_rng_state()], | ||
| "hybrid": [fleet.meta_parallel.get_rng_state_tracker().get_states_tracker()] | ||
| if self.args.use_hybrid_parallel | ||
| else [], | ||
| } | ||
| | ||
| def reset_rng_state(self, states, index=0): | ||
| # set random states | ||
| if len(states) != 3: | ||
| raise ValueError("The length of state should be 3") | ||
| cpu_state = states["cpu"][index] | ||
| cuda_state = states["cuda"][index] | ||
| paddle.framework.core.default_cpu_generator().set_state(cpu_state) | ||
| # TODO(daisiming): support xpu and other custom devices. | ||
| if core.is_compiled_with_cuda(): | ||
| for j in range(core.get_cuda_device_count()): | ||
| core.default_cuda_generator(j).set_state(cuda_state[j]) | ||
| if self.args.use_hybrid_parallel: | ||
| hybrid_state = states["hybrid"][index] | ||
| fleet.meta_parallel.get_rng_state_tracker().set_states_tracker(hybrid_state) | ||
| | ||
| def accum_forward_backward(self, model): | ||
| # Step2: representation gradient computation and caching | ||
| for i in range(len(self.accum_q_features)): | ||
| self.accum_q_features[i].stop_gradient = False | ||
| q_reps = paddle.concat(self.accum_q_features, axis=0) | ||
| for i in range(len(self.accum_p_features)): | ||
| self.accum_p_features[i].stop_gradient = False | ||
| p_reps = paddle.concat(self.accum_p_features, axis=0) | ||
| | ||
| loss = self.loss_fn(q_reps, p_reps) | ||
| if self.do_grad_scaling: | ||
| self.scaler.scale(loss).backward() | ||
| else: | ||
| loss.backward() | ||
| # get represetation gradient cache | ||
| accum_q_grads = [q.grad for q in self.accum_q_features] | ||
| accum_p_grads = [p.grad for p in self.accum_p_features] | ||
| del q_reps, p_reps | ||
| | ||
| # clear trash memory | ||
| self.clear_memory() | ||
| | ||
| current_rng_state = self.get_current_rng_state() | ||
| # Step3: sub-batch gradient accumulation | ||
| for i in range(self.accum_freq): | ||
| inputs = self.accum_data[i] | ||
| inputs = self._prepare_inputs(inputs) | ||
| | ||
| sync_context = model.no_sync() if i != self.accum_freq - 1 and hasattr(model, "no_sync") else nullcontext() | ||
| with sync_context: | ||
| self.reset_rng_state(self.accum_rng_states, index=i) | ||
| | ||
| with self.autocast_smart_context_manager(): | ||
| query_reps, passage_reps = model(**inputs, return_encode=True) | ||
| | ||
| if self.embedding_negatives_cross_device: | ||
| query_reps = dist_gather_tensor_with_gradient(query_reps) | ||
| passage_reps = dist_gather_tensor_with_gradient(passage_reps) | ||
| | ||
| _loss = paddle.dot(query_reps.flatten(), accum_q_grads[i].flatten()) + paddle.dot( | ||
| passage_reps.flatten(), accum_p_grads[i].flatten() | ||
| ) | ||
| _loss.backward() | ||
| | ||
| self.reset_rng_state(current_rng_state) | ||
| self.clear_state() | ||
| return loss.detach() | ||
| | ||
| def training_step( | ||
| self, | ||
| model, | ||
| inputs, | ||
| step_control=0, | ||
| ): | ||
| if self.args.pipeline_parallel_degree > 1: | ||
| raise NotImplementedError("Cannot support pipeline parallel for Embedding training now.") | ||
| | ||
| if self.args.gradient_accumulation_steps == 1: | ||
| return super().training_step(model, inputs) | ||
| else: | ||
| self.forward_no_grad(model, inputs) | ||
| | ||
| # if (step_control + 1) % self.args.gradient_accumulation_steps is not zero, move on to next batch. | ||
| if (step_control + 1) % self.args.gradient_accumulation_steps != 0: | ||
| return 0.0 | ||
| | ||
| loss = self.accum_forward_backward(model) | ||
| return loss | ||
Add this suggestion to a batch that can be applied as a single commit. This suggestion is invalid because no changes were made to the code. Suggestions cannot be applied while the pull request is closed. Suggestions cannot be applied while viewing a subset of changes. Only one suggestion per line can be applied in a batch. Add this suggestion to a batch that can be applied as a single commit. Applying suggestions on deleted lines is not supported. You must change the existing code in this line in order to create a valid suggestion. Outdated suggestions cannot be applied. This suggestion has been applied or marked resolved. Suggestions cannot be applied from pending reviews. Suggestions cannot be applied on multi-line comments. Suggestions cannot be applied while the pull request is queued to merge. Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
可以找其他 utils 的目录放吧。感觉还比较通用。gathe across dp
函数里面的 _gather_tensor_with_gradient 这个 gradient怎么体现的?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
体现在这里,重新把tensor赋值进去。all_tensors[sharding_rank] = tensor