-   Notifications  You must be signed in to change notification settings 
- Fork 5.9k
Add distributed implementation for recommender system #7810
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
   Merged  
     Merged  
 Changes from all commits
 Commits 
  Show all changes 
  2 commits   Select commit Hold shift + click to select a range 
  File filter
Filter by extension
Conversations
 Failed to load comments.  
    Loading  
 Jump to
  Jump to file  
  Failed to load files.  
    Loading  
 Diff view
Diff view
There are no files selected for viewing
   216 changes: 216 additions & 0 deletions  216   python/paddle/v2/fluid/tests/book_distribute/notest_recommender_system_dist.py          
     This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters   
     | Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,216 @@ | ||
| # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|  | ||
| import numpy as np | ||
| import os | ||
| import paddle.v2 as paddle | ||
| import paddle.v2.fluid as fluid | ||
| import paddle.v2.fluid.core as core | ||
| import paddle.v2.fluid.layers as layers | ||
| import paddle.v2.fluid.nets as nets | ||
| from paddle.v2.fluid.optimizer import SGDOptimizer | ||
|  | ||
| IS_SPARSE = True | ||
| BATCH_SIZE = 256 | ||
| PASS_NUM = 100 | ||
|  | ||
|  | ||
| def get_usr_combined_features(): | ||
| USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1 | ||
| uid = layers.data(name='user_id', shape=[1], dtype='int64') | ||
| usr_emb = layers.embedding( | ||
| input=uid, | ||
| dtype='float32', | ||
| size=[USR_DICT_SIZE, 32], | ||
| param_attr='user_table', | ||
| is_sparse=IS_SPARSE) | ||
| usr_fc = layers.fc(input=usr_emb, size=32) | ||
| USR_GENDER_DICT_SIZE = 2 | ||
|  | ||
| usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64') | ||
| usr_gender_emb = layers.embedding( | ||
| input=usr_gender_id, | ||
| size=[USR_GENDER_DICT_SIZE, 16], | ||
| param_attr='gender_table', | ||
| is_sparse=IS_SPARSE) | ||
| usr_gender_fc = layers.fc(input=usr_gender_emb, size=16) | ||
|  | ||
| USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table) | ||
| usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64") | ||
| usr_age_emb = layers.embedding( | ||
| input=usr_age_id, | ||
| size=[USR_AGE_DICT_SIZE, 16], | ||
| is_sparse=IS_SPARSE, | ||
| param_attr='age_table') | ||
| usr_age_fc = layers.fc(input=usr_age_emb, size=16) | ||
|  | ||
| USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1 | ||
| usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64") | ||
| usr_job_emb = layers.embedding( | ||
| input=usr_job_id, | ||
| size=[USR_JOB_DICT_SIZE, 16], | ||
| param_attr='job_table', | ||
| is_sparse=IS_SPARSE) | ||
| usr_job_fc = layers.fc(input=usr_job_emb, size=16) | ||
|  | ||
| concat_embed = layers.concat( | ||
| input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1) | ||
|  | ||
| usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh") | ||
| return usr_combined_features | ||
|  | ||
|  | ||
| def get_mov_combined_features(): | ||
| MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1 | ||
| mov_id = layers.data(name='movie_id', shape=[1], dtype='int64') | ||
| mov_emb = layers.embedding( | ||
| input=mov_id, | ||
| dtype='float32', | ||
| size=[MOV_DICT_SIZE, 32], | ||
| param_attr='movie_table', | ||
| is_sparse=IS_SPARSE) | ||
| mov_fc = layers.fc(input=mov_emb, size=32) | ||
|  | ||
| CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories()) | ||
| category_id = layers.data(name='category_id', shape=[1], dtype='int64') | ||
| mov_categories_emb = layers.embedding( | ||
| input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE) | ||
| mov_categories_hidden = layers.sequence_pool( | ||
| input=mov_categories_emb, pool_type="sum") | ||
|  | ||
| MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict()) | ||
| mov_title_id = layers.data(name='movie_title', shape=[1], dtype='int64') | ||
| mov_title_emb = layers.embedding( | ||
| input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE) | ||
| mov_title_conv = nets.sequence_conv_pool( | ||
| input=mov_title_emb, | ||
| num_filters=32, | ||
| filter_size=3, | ||
| act="tanh", | ||
| pool_type="sum") | ||
|  | ||
| concat_embed = layers.concat( | ||
| input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1) | ||
|  | ||
| mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh") | ||
| return mov_combined_features | ||
|  | ||
|  | ||
| def model(): | ||
| usr_combined_features = get_usr_combined_features() | ||
| mov_combined_features = get_mov_combined_features() | ||
|  | ||
| # need cos sim | ||
| inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features) | ||
| scale_infer = layers.scale(x=inference, scale=5.0) | ||
|  | ||
| label = layers.data(name='score', shape=[1], dtype='float32') | ||
| square_cost = layers.square_error_cost(input=scale_infer, label=label) | ||
| avg_cost = layers.mean(x=square_cost) | ||
|  | ||
| return avg_cost | ||
|  | ||
|  | ||
| def func_feed(feeding, data, place): | ||
| feed_tensors = {} | ||
| for (key, idx) in feeding.iteritems(): | ||
| tensor = core.LoDTensor() | ||
| if key != "category_id" and key != "movie_title": | ||
| if key == "score": | ||
| numpy_data = np.array(map(lambda x: x[idx], data)).astype( | ||
| "float32") | ||
| else: | ||
| numpy_data = np.array(map(lambda x: x[idx], data)).astype( | ||
| "int64") | ||
| else: | ||
| numpy_data = map(lambda x: np.array(x[idx]).astype("int64"), data) | ||
| lod_info = [len(item) for item in numpy_data] | ||
| offset = 0 | ||
| lod = [offset] | ||
| for item in lod_info: | ||
| offset += item | ||
| lod.append(offset) | ||
| numpy_data = np.concatenate(numpy_data, axis=0) | ||
| tensor.set_lod([lod]) | ||
|  | ||
| numpy_data = numpy_data.reshape([numpy_data.shape[0], 1]) | ||
| tensor.set(numpy_data, place) | ||
| feed_tensors[key] = tensor | ||
| return feed_tensors | ||
|  | ||
|  | ||
| def main(): | ||
| cost = model() | ||
| optimizer = SGDOptimizer(learning_rate=0.2) | ||
| optimize_ops, params_grads = optimizer.minimize(cost) | ||
|  | ||
| train_reader = paddle.batch( | ||
| paddle.reader.shuffle( | ||
| paddle.dataset.movielens.train(), buf_size=8192), | ||
| batch_size=BATCH_SIZE) | ||
|  | ||
| place = fluid.CPUPlace() | ||
| exe = fluid.Executor(place) | ||
|  | ||
| t = fluid.DistributeTranspiler() | ||
|  | ||
| # all parameter server endpoints list for spliting parameters | ||
| pserver_endpoints = os.getenv("PSERVERS") | ||
| # server endpoint for current node | ||
| current_endpoint = os.getenv("SERVER_ENDPOINT") | ||
| # run as trainer or parameter server | ||
| training_role = os.getenv("TRAINING_ROLE", "TRAINER") | ||
| t.transpile( | ||
| optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2) | ||
|  | ||
| if training_role == "PSERVER": | ||
| if not current_endpoint: | ||
| print("need env SERVER_ENDPOINT") | ||
| exit(1) | ||
| pserver_prog = t.get_pserver_program(current_endpoint) | ||
| pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) | ||
| exe.run(pserver_startup) | ||
| exe.run(pserver_prog) | ||
| elif training_role == "TRAINER": | ||
| exe.run(fluid.default_startup_program()) | ||
| trainer_prog = t.get_trainer_program() | ||
|  | ||
| feeding = { | ||
| 'user_id': 0, | ||
| 'gender_id': 1, | ||
| 'age_id': 2, | ||
| 'job_id': 3, | ||
| 'movie_id': 4, | ||
| 'category_id': 5, | ||
| 'movie_title': 6, | ||
| 'score': 7 | ||
| } | ||
|  | ||
| for pass_id in range(PASS_NUM): | ||
| for data in train_reader(): | ||
| outs = exe.run(trainer_prog, | ||
| feed=func_feed(feeding, data, place), | ||
| fetch_list=[cost]) | ||
| out = np.array(outs[0]) | ||
| print("cost=" + str(out[0])) | ||
| if out[0] < 6.0: | ||
| print("Training complete. Average cost is less than 6.0.") | ||
| # if avg cost less than 6.0, we think our code is good. | ||
| exit(0) | ||
| else: | ||
| print("environment var TRAINER_ROLE should be TRAINER os PSERVER") | ||
|  | ||
|  | ||
| if __name__ == '__main__': | ||
| main() | ||
 Add this suggestion to a batch that can be applied as a single commit. This suggestion is invalid because no changes were made to the code. Suggestions cannot be applied while the pull request is closed. Suggestions cannot be applied while viewing a subset of changes. Only one suggestion per line can be applied in a batch. Add this suggestion to a batch that can be applied as a single commit. Applying suggestions on deleted lines is not supported. You must change the existing code in this line in order to create a valid suggestion. Outdated suggestions cannot be applied. This suggestion has been applied or marked resolved. Suggestions cannot be applied from pending reviews. Suggestions cannot be applied on multi-line comments. Suggestions cannot be applied while the pull request is queued to merge. Suggestion cannot be applied right now. Please check back later.    
 
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Maybe we need to print some in the loop and before it exit normally.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thank you. Added new print statements in the latest commit.