Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 19 additions & 19 deletions test/mkldnn/test_reduce_bf16_mkldnn_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,12 +32,12 @@
class TestReduceSumDefaultBF16OneDNNOp(OpTest):
def setUp(self):
self.op_type = "reduce_sum"
self.use_mkldnn = True
self.use_onednn = True
self.x_fp32 = np.random.random((5, 6, 10)).astype("float32")
self.x_bf16 = convert_float_to_uint16(self.x_fp32)
self.inputs = {'X': self.x_bf16}
self.outputs = {'Out': self.x_fp32.sum(axis=0)}
self.attrs = {'use_mkldnn': self.use_mkldnn}
self.attrs = {'use_mkldnn': self.use_onednn}

def test_check_output(self):
self.check_output(
Expand Down Expand Up @@ -96,11 +96,11 @@ class TestReduceSum4DReduceAllDimAttributeBF16OneDNNOp(
):
def setUp(self):
self.op_type = "reduce_sum"
self.use_mkldnn = True
self.use_onednn = True
self.x_fp32 = np.random.normal(size=(2, 3, 5, 6)).astype('float32')
self.x_bf16 = convert_float_to_uint16(self.x_fp32)
self.inputs = {'X': self.x_bf16}
self.attrs = {'use_mkldnn': self.use_mkldnn, 'dim': [0, 1, 2, 3]}
self.attrs = {'use_mkldnn': self.use_onednn, 'dim': [0, 1, 2, 3]}
self.outputs = {'Out': self.x_fp32.sum(axis=tuple(self.attrs['dim']))}


Expand All @@ -109,11 +109,11 @@ class TestReduceSum4DReduceAllWithoutReduceAllAttributeNegativeDimsBF16OneDNNOp(
):
def setUp(self):
self.op_type = "reduce_sum"
self.use_mkldnn = True
self.use_onednn = True
self.x_fp32 = np.random.normal(size=(4, 7, 6, 6)).astype('float32')
self.x_bf16 = convert_float_to_uint16(self.x_fp32)
self.inputs = {'X': self.x_bf16}
self.attrs = {'use_mkldnn': self.use_mkldnn, 'dim': [-1, -2, -3, -4]}
self.attrs = {'use_mkldnn': self.use_onednn, 'dim': [-1, -2, -3, -4]}
self.outputs = {'Out': self.x_fp32.sum(axis=tuple(self.attrs['dim']))}


Expand All @@ -122,7 +122,7 @@ class TestReduceSum5DReduceAllKeepDimsBF16OneDNNOp(
):
def setUp(self):
self.op_type = "reduce_sum"
self.use_mkldnn = True
self.use_onednn = True
self.x_fp32 = np.random.normal(size=(2, 5, 3, 2, 5)).astype('float32')
self.x_bf16 = convert_float_to_uint16(self.x_fp32)
self.inputs = {'X': self.x_bf16}
Expand All @@ -135,11 +135,11 @@ class TestReduceSum4DReduceAllBF16OneDNNOp(
):
def setUp(self):
self.op_type = "reduce_sum"
self.use_mkldnn = True
self.use_onednn = True
self.x_fp32 = np.random.normal(size=(4, 5, 4, 5)).astype('float32')
self.x_bf16 = convert_float_to_uint16(self.x_fp32)
self.inputs = {'X': self.x_bf16}
self.attrs = {'reduce_all': True, 'use_mkldnn': self.use_mkldnn}
self.attrs = {'reduce_all': True, 'use_mkldnn': self.use_onednn}
self.outputs = {'Out': self.x_fp32.sum()}


Expand All @@ -152,11 +152,11 @@ class TestReduceMax3DBF16OneDNNOp(TestReduceSumDefaultBF16OneDNNOp):

def setUp(self):
self.op_type = "reduce_max"
self.use_mkldnn = True
self.use_onednn = True
self.x_fp32 = np.random.random((5, 6, 10)).astype("float32")
self.x_bf16 = convert_float_to_uint16(self.x_fp32)
self.inputs = {'X': self.x_bf16}
self.attrs = {'dim': [-1], 'use_mkldnn': self.use_mkldnn}
self.attrs = {'dim': [-1], 'use_mkldnn': self.use_onednn}
self.outputs = {'Out': self.x_fp32.max(axis=tuple(self.attrs['dim']))}


Expand All @@ -171,11 +171,11 @@ class TestReduceMax4DNegativeAndPositiveDimsBF16OneDNNOp(

def setUp(self):
self.op_type = "reduce_max"
self.use_mkldnn = True
self.use_onednn = True
self.x_fp32 = np.random.random((5, 6, 10, 9)).astype("float32")
self.x_bf16 = convert_float_to_uint16(self.x_fp32)
self.inputs = {'X': self.x_bf16}
self.attrs = {'dim': [-1, 0, 1], 'use_mkldnn': self.use_mkldnn}
self.attrs = {'dim': [-1, 0, 1], 'use_mkldnn': self.use_onednn}
self.outputs = {'Out': self.x_fp32.max(axis=tuple(self.attrs['dim']))}


Expand All @@ -188,33 +188,33 @@ class TestReduceMin3DBF16OneDNNOp(TestReduceSumDefaultBF16OneDNNOp):

def setUp(self):
self.op_type = "reduce_min"
self.use_mkldnn = True
self.use_onednn = True
self.x_fp32 = np.random.random((5, 6, 10)).astype("float32")
self.x_bf16 = convert_float_to_uint16(self.x_fp32)
self.inputs = {'X': self.x_bf16}
self.attrs = {'dim': [2], 'use_mkldnn': self.use_mkldnn}
self.attrs = {'dim': [2], 'use_mkldnn': self.use_onednn}
self.outputs = {'Out': self.x_fp32.min(axis=tuple(self.attrs['dim']))}


class TestReduceMean3DBF16OneDNNOp(TestReduceDefaultWithGradBF16OneDNNOp):
def setUp(self):
self.op_type = "reduce_mean"
self.use_mkldnn = True
self.use_onednn = True
self.x_fp32 = np.random.random((5, 6, 10)).astype("float32")
self.x_bf16 = convert_float_to_uint16(self.x_fp32)
self.inputs = {'X': self.x_bf16}
self.attrs = {'use_mkldnn': self.use_mkldnn}
self.attrs = {'use_mkldnn': self.use_onednn}
self.outputs = {'Out': self.x_fp32.sum(axis=0) / self.x_fp32.shape[0]}


class TestReduceMean4DBF16OneDNNOp(TestReduceDefaultWithGradBF16OneDNNOp):
def setUp(self):
self.op_type = "reduce_mean"
self.use_mkldnn = True
self.use_onednn = True
self.x_fp32 = np.random.random((5, 6, 3, 5)).astype("float32")
self.x_bf16 = convert_float_to_uint16(self.x_fp32)
self.inputs = {'X': self.x_bf16}
self.attrs = {'use_mkldnn': self.use_mkldnn, 'dim': [0, 1]}
self.attrs = {'use_mkldnn': self.use_onednn, 'dim': [0, 1]}
self.outputs = {
'Out': self.x_fp32.sum(axis=tuple(self.attrs['dim']))
/ (self.x_fp32.shape[0] * self.x_fp32.shape[1])
Expand Down
8 changes: 4 additions & 4 deletions test/mkldnn/test_reshape_bf16_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,16 +27,16 @@
class TestReshapeBf16Op(OpTest):
def setUp(self):
self.op_type = "reshape2"
self.use_mkldnn = False
self.mkldnn_data_type = "bfloat16"
self.use_onednn = False
self.onednn_data_type = "bfloat16"
self.init_data()
self.init_input_data()

self.inputs = {'X': self.input_data}
self.attrs = {
'shape': self.new_shape,
'use_mkldnn': self.use_mkldnn,
'mkldnn_data_type': self.mkldnn_data_type,
'use_mkldnn': self.use_onednn,
'mkldnn_data_type': self.onednn_data_type,
}
self.outputs = {
"Out": self.inputs["X"].reshape(self.inferred_shape),
Expand Down
4 changes: 2 additions & 2 deletions test/mkldnn/test_scale_bf16_mkldnn_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def setUp(self):
self.scale = -2.3
self.inputs = {'X': self.x_bf16}
self.attrs = {'scale': self.scale, 'use_mkldnn': True, 'bias': 0.4}
self.use_mkldnn = True
self.use_onednn = True
self.outputs = {
'Out': (self.x_fp32 * self.attrs['scale']) + self.attrs['bias']
}
Expand Down Expand Up @@ -82,7 +82,7 @@ def setUp(self):
'bias': 0.0,
'bias_after_scale': False,
}
self.use_mkldnn = True
self.use_onednn = True
self.outputs = {
'Out': (self.x_fp32 + self.attrs['bias']) * self.attrs['scale']
}
Expand Down
Loading