Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions paddle/phi/kernels/cpu/adagrad_kernel.cc
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ struct DenseAdagradFunctor<phi::CPUContext, T> {

template <typename T>
struct SparseAdagradFunctor<phi::CPUContext, T> {
void operator()(const phi::CPUContext& context,
void operator()(const phi::CPUContext& dev_ctx,
const phi::SelectedRows& grad,
const DenseTensor& learning_rate,
T epsilon,
Expand All @@ -75,16 +75,16 @@ struct SparseAdagradFunctor<phi::CPUContext, T> {
// 1. g_m.rows = set(g.rows)
auto grad_width = grad.value().dims()[1];
phi::funcs::scatter::MergeAdd<phi::CPUContext, T> merge_func;
auto grad_merge = merge_func(context, grad);
auto grad_merge = merge_func(dev_ctx, grad);
auto& merge_rows = grad_merge.rows();
auto* grad_merge_data = grad_merge.mutable_value()->template data<T>();

// 2. m += g_m * g_m
auto grad_square =
SquareSelectedRows<phi::CPUContext, T>(context, grad_merge);
SquareSelectedRows<phi::CPUContext, T>(dev_ctx, grad_merge);

phi::funcs::SelectedRowsAddToTensor<phi::CPUContext, T> functor;
functor(context, grad_square, moment);
functor(dev_ctx, grad_square, moment);

// 3. update parameter
auto* lr = learning_rate.data<T>();
Expand Down
4 changes: 2 additions & 2 deletions paddle/phi/kernels/cpu/sequence_expand_grad_kernel.cc
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ namespace phi {
* */
template <typename T>
struct SequenceExpandGradFunctor<phi::CPUContext, T> {
void operator()(const phi::CPUContext& context,
void operator()(const phi::CPUContext& dev_ctx,
const phi::DenseTensor& dout,
const phi::Vector<size_t>& x_lod, /*expand source lod*/
const phi::Vector<size_t>& ref_lod, /*expand referenced lod*/
Expand All @@ -50,7 +50,7 @@ struct SequenceExpandGradFunctor<phi::CPUContext, T> {
auto dout_sub = dout.Slice(dout_offset, dout_end);
dout_sub.Resize({repeat_num, dx_sub.dims()[0]});
phi::funcs::ColwiseSum<phi::CPUContext, T> col_sum;
col_sum(context, dout_sub, &dx_sub);
col_sum(dev_ctx, dout_sub, &dx_sub);
dout_offset += repeat_num * x_seq_len;
}
}
Expand Down
40 changes: 20 additions & 20 deletions paddle/phi/kernels/cpu/unique_consecutive_functor.h
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
namespace phi {

template <typename InT, typename IndexT, typename Context>
static void UniqueConsecutiveFlattenedTensor(const Context& context,
static void UniqueConsecutiveFlattenedTensor(const Context& dev_ctx,
const DenseTensor& in,
DenseTensor* out,
bool return_inverse,
Expand Down Expand Up @@ -61,18 +61,18 @@ static void UniqueConsecutiveFlattenedTensor(const Context& context,
out_vec.resize(output_size);

out->Resize(common::make_ddim({output_size}));
auto* out_data = context.template Alloc<InT>(out);
auto* out_data = dev_ctx.template Alloc<InT>(out);
std::copy(out_vec.begin(), out_vec.end(), out_data);

if (return_inverse) {
inverse->Resize(common::make_ddim({in.numel()}));
auto* inverse_data = context.template Alloc<IndexT>(inverse);
auto* inverse_data = dev_ctx.template Alloc<IndexT>(inverse);
std::copy(inverse_vec.begin(), inverse_vec.end(), inverse_data);
}

if (return_counts) {
count->Resize(common::make_ddim({out->numel()}));
auto* counts_data = context.template Alloc<IndexT>(count);
auto* counts_data = dev_ctx.template Alloc<IndexT>(count);
std::copy(counts_vec.begin(), counts_vec.end(), counts_data);
}
}
Expand All @@ -87,14 +87,14 @@ struct UniqueConsecutiveFlattenedTensorFunctor {
DenseTensor* inverse_;
DenseTensor* count_;

UniqueConsecutiveFlattenedTensorFunctor(const Context& context,
UniqueConsecutiveFlattenedTensorFunctor(const Context& dev_ctx,
const DenseTensor& in,
DenseTensor* out,
bool return_inverse,
bool return_counts,
DenseTensor* inverse,
DenseTensor* count)
: dev_ctx_(context),
: dev_ctx_(dev_ctx),
in_(in),
out_(out),
return_inverse_(return_inverse),
Expand All @@ -111,7 +111,7 @@ struct UniqueConsecutiveFlattenedTensorFunctor {

template <typename Context, class ForwardIt, typename InT, typename IndexT>
static ForwardIt UniqueConsecutiveDimImpl(
const Context& context UNUSED,
const Context& dev_ctx UNUSED,
ForwardIt first,
ForwardIt last,
const std::vector<IndexT>& sorted_indices_vec,
Expand Down Expand Up @@ -143,7 +143,7 @@ static ForwardIt UniqueConsecutiveDimImpl(
}

template <typename Context, typename InT, typename IndexT>
static void UniqueConsecutiveDim(const Context& context,
static void UniqueConsecutiveDim(const Context& dev_ctx,
const DenseTensor& in,
DenseTensor* out,
bool return_inverse,
Expand All @@ -162,9 +162,9 @@ static void UniqueConsecutiveDim(const Context& context,
DenseTensor in_trans;
DDim in_trans_dims = common::make_ddim(in_trans_dims_vec);
in_trans.Resize(in_trans_dims);
context.template Alloc<InT>(&in_trans);
dev_ctx.template Alloc<InT>(&in_trans);
phi::funcs::TransCompute<Context, InT>(
in.dims().size(), context, in, &in_trans, permute);
in.dims().size(), dev_ctx, in, &in_trans, permute);
// reshape tensor: eg. [dim1, dim0, dim2] -> [dim1, dim0*dim2]
DDim in_trans_flat_dims = common::flatten_to_2d(in_trans_dims, 1);
in_trans.Resize(in_trans_flat_dims);
Expand All @@ -177,7 +177,7 @@ static void UniqueConsecutiveDim(const Context& context,
// sort tensor according to indices
DenseTensor input_sorted;
input_sorted.Resize(in_trans_dims);
context.template Alloc<InT>(&input_sorted);
dev_ctx.template Alloc<InT>(&input_sorted);
InT* input_sorted_data = input_sorted.data<InT>();
for (size_t i = 0; i < sorted_indices_vec.size(); ++i) {
memcpy(input_sorted_data + i * col,
Expand All @@ -189,7 +189,7 @@ static void UniqueConsecutiveDim(const Context& context,
std::vector<IndexT> counts_vec(sorted_indices_vec.size(), 0);
auto last = UniqueConsecutiveDimImpl<Context,
std::vector<DenseTensor>::iterator,
InT>(context,
InT>(dev_ctx,
input_unbind.begin(),
input_unbind.end(),
sorted_indices_vec,
Expand All @@ -203,18 +203,18 @@ static void UniqueConsecutiveDim(const Context& context,
std::vector<int64_t> out_trans_dims_vec = in_trans_dims_vec;
out_trans_dims_vec[0] = input_unbind.size();
out_trans.Resize(common::make_ddim(out_trans_dims_vec));
context.template Alloc<InT>(&out_trans);
dev_ctx.template Alloc<InT>(&out_trans);
std::swap(out_trans_dims_vec[0], out_trans_dims_vec[axis]);
out->Resize(common::make_ddim(out_trans_dims_vec));
context.template Alloc<InT>(out);
concat_functor(context, input_unbind, 0, &out_trans);
dev_ctx.template Alloc<InT>(out);
concat_functor(dev_ctx, input_unbind, 0, &out_trans);
phi::funcs::TransCompute<Context, InT>(
out_trans.dims().size(), context, out_trans, out, permute);
out_trans.dims().size(), dev_ctx, out_trans, out, permute);
if (return_inverse) {
phi::TensorFromVector(inverse_vec, context, inverse);
phi::TensorFromVector(inverse_vec, dev_ctx, inverse);
}
if (return_counts) {
phi::TensorFromVector(counts_vec, context, count);
phi::TensorFromVector(counts_vec, dev_ctx, count);
}
}

Expand All @@ -229,15 +229,15 @@ struct UniqueConsecutiveDimFunctor {
DenseTensor* inverse_;
DenseTensor* count_;

UniqueConsecutiveDimFunctor(const Context& context,
UniqueConsecutiveDimFunctor(const Context& dev_ctx,
const DenseTensor& in,
DenseTensor* out,
const int axis,
bool return_inverse,
bool return_counts,
DenseTensor* inverse,
DenseTensor* count)
: dev_ctx_(context),
: dev_ctx_(dev_ctx),
in_(in),
out_(out),
axis_(axis),
Expand Down
12 changes: 6 additions & 6 deletions paddle/phi/kernels/cpu/unique_kernel.cc
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
namespace phi {

template <typename T, typename Context>
void UniqueKernel(const Context& context,
void UniqueKernel(const Context& dev_ctx,
const DenseTensor& x,
bool return_index,
bool return_inverse,
Expand All @@ -36,7 +36,7 @@ void UniqueKernel(const Context& context,
DenseTensor* index,
DenseTensor* counts) {
bool is_sorted = true;
UniqueRawKernel<T, Context>(context,
UniqueRawKernel<T, Context>(dev_ctx,
x,
return_index,
return_inverse,
Expand All @@ -51,7 +51,7 @@ void UniqueKernel(const Context& context,
}

template <typename T, typename Context>
void UniqueRawKernel(const Context& context,
void UniqueRawKernel(const Context& dev_ctx,
const DenseTensor& x,
bool return_index,
bool return_inverse,
Expand All @@ -76,14 +76,14 @@ void UniqueRawKernel(const Context& context,
if (!is_sorted) {
phi::VisitDataType(
dtype,
phi::funcs::UniqueOpFunctor<Context, T>(context, out, index, &x));
phi::funcs::UniqueOpFunctor<Context, T>(dev_ctx, out, index, &x));
return;
}

if (axis.empty()) {
phi::VisitDataTypeTiny(
dtype,
phi::funcs::UniqueFlattenedTensorFunctor<Context, T>(context,
phi::funcs::UniqueFlattenedTensorFunctor<Context, T>(dev_ctx,
x,
out,
indices,
Expand All @@ -97,7 +97,7 @@ void UniqueRawKernel(const Context& context,
axis_value = (axis_value == -1) ? (x.dims().size() - 1) : axis_value;
phi::VisitDataTypeTiny(
dtype,
phi::funcs::UniqueDimFunctor<Context, T>(context,
phi::funcs::UniqueDimFunctor<Context, T>(dev_ctx,
x,
out,
indices,
Expand Down
Loading