Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -4,21 +4,25 @@
import paddle.v2.fluid as fluid


def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
hid_dim=32):
def convolution_net(data,
label,
input_dim,
class_dim=2,
emb_dim=128,
hid_dim=128):
emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim])
conv_3 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim,
filter_size=3,
act="tanh",
pool_type="sqrt")
pool_type="max")
conv_4 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim,
filter_size=4,
act="tanh",
pool_type="sqrt")
pool_type="max")
prediction = fluid.layers.fc(input=[conv_3, conv_4],
size=class_dim,
act="softmax")
Expand Down
Original file line number Diff line number Diff line change
@@ -1,6 +1,9 @@
import math
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
from paddle.v2.fluid.param_attr import ParamAttr
from paddle.v2.fluid.initializer import NormalInitializer


def stacked_lstm_net(data,
Expand All @@ -9,32 +12,85 @@ def stacked_lstm_net(data,
class_dim=2,
emb_dim=128,
hid_dim=512,
stacked_num=3):
stacked_num=3,
batch_size=100):
assert stacked_num % 2 == 1

emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim])
# add bias attr

# TODO(qijun) linear act
fc1 = fluid.layers.fc(input=emb, size=hid_dim)
lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
emb = fluid.layers.embedding(
input=data,
size=[input_dim, emb_dim],
param_attr=ParamAttr(
initializer=NormalInitializer(
loc=0., scale=1.0 / math.sqrt(input_dim)), ))

fc1 = fluid.layers.fc(input=emb,
size=hid_dim,
bias_attr=ParamAttr(initializer=NormalInitializer(
loc=0., scale=0.)),
param_attr=ParamAttr(
name='fc1',
initializer=NormalInitializer(
loc=0., scale=1.0 / math.sqrt(emb_dim)), ))
lstm1, cell1 = fluid.layers.dynamic_lstm(
input=fc1,
size=hid_dim,
candidate_activation='relu',
bias_attr=ParamAttr(initializer=NormalInitializer(
loc=0., scale=0.)),
param_attr=ParamAttr(
initializer=NormalInitializer(
loc=0., scale=1.0 / math.sqrt(emb_dim)), ))

inputs = [fc1, lstm1]

for i in range(2, stacked_num + 1):
fc = fluid.layers.fc(input=inputs, size=hid_dim)
fc = fluid.layers.fc(input=inputs,
size=hid_dim,
bias_attr=ParamAttr(initializer=NormalInitializer(
loc=0., scale=0.)),
param_attr=[
ParamAttr(
learning_rate=1e-3,
initializer=NormalInitializer(
loc=0., scale=1.0 /
math.sqrt(hid_dim))), ParamAttr(
learning_rate=1.,
initializer=NormalInitializer(
loc=0., scale=0.), )
])
lstm, cell = fluid.layers.dynamic_lstm(
input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
input=fc,
size=hid_dim,
is_reverse=(i % 2) == 0,
candidate_activation='relu',
bias_attr=ParamAttr(initializer=NormalInitializer(
loc=0., scale=0.)),
param_attr=ParamAttr(
initializer=NormalInitializer(
loc=0., scale=1.0 / math.sqrt(emb_dim)), ))
inputs = [fc, lstm]

fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')

prediction = fluid.layers.fc(input=[fc_last, lstm_last],
size=class_dim,
act='softmax')
prediction = fluid.layers.fc(
input=[fc_last, lstm_last],
size=class_dim,
bias_attr=ParamAttr(initializer=NormalInitializer(
loc=0., scale=0.)),
param_attr=[
ParamAttr(
learning_rate=1e-3,
initializer=NormalInitializer(
loc=0., scale=1.0 / math.sqrt(hid_dim)), ), ParamAttr(
learning_rate=1.,
initializer=NormalInitializer(
loc=0., scale=0.), )
],
act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
avg_cost = fluid.layers.scale(x=avg_cost, scale=float(batch_size))
adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
adam_optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=prediction, label=label)
Expand Down Expand Up @@ -69,7 +125,11 @@ def main():
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
cost, accuracy, acc_out = stacked_lstm_net(
data, label, input_dim=dict_dim, class_dim=class_dim)
data,
label,
input_dim=dict_dim,
class_dim=class_dim,
batch_size=BATCH_SIZE)

train_data = paddle.batch(
paddle.reader.shuffle(
Expand Down