- Notifications
You must be signed in to change notification settings - Fork 5.9k
Add paddle.lerp API to do a linear interpolation #37253
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
17 commits Select commit Hold shift + click to select a range
c110537 save temp
Avin0323 d1a0a02 Merge branch 'develop' into add-lerp
Avin0323 1a5788c add unittest, test=develop
Avin0323 dde0cbe fix ci error, test=develop
Avin0323 f2c5ad8 Merge branch 'develop' into add-lerp
Avin0323 a7a641f fix grad accuracy error, test=develop
Avin0323 7186c29 fix unused error, test=develop
Avin0323 860bbd4 fix compilation error on Windows, test=develop
Avin0323 1ea004c Merge branch 'develop' into add-lerp
Avin0323 150dc07 Merge branch 'develop' into add-lerp
Avin0323 de499cf Merge branch 'develop' into add-lerp
Avin0323 7f3e5d0 add unittest, test=develop
Avin0323 77c570d Merge branch 'add-lerp' of https://github.com/Avin0323/Paddle into ad…
Avin0323 cf8ee38 modify by review comment and add lerp_
Avin0323 f76a3dc fix inplace api, test=develop
Avin0323 e0424a2 fix inplace api, test=develop
Avin0323 67fa248 fix coverage error, test=develop
Avin0323 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,146 @@ | ||
| // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
| // | ||
| // Licensed under the Apache License, Version 2.0 (the "License"); | ||
| // you may not use this file except in compliance with the License. | ||
| // You may obtain a copy of the License at | ||
| // | ||
| // http://www.apache.org/licenses/LICENSE-2.0 | ||
| // | ||
| // Unless required by applicable law or agreed to in writing, software | ||
| // distributed under the License is distributed on an "AS IS" BASIS, | ||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| // See the License for the specific language governing permissions and | ||
| // limitations under the License. | ||
| | ||
| #include "paddle/fluid/operators/lerp_op.h" | ||
| | ||
| namespace paddle { | ||
| namespace operators { | ||
| | ||
| class LerpOp : public framework::OperatorWithKernel { | ||
| public: | ||
| using framework::OperatorWithKernel::OperatorWithKernel; | ||
| | ||
| void InferShape(framework::InferShapeContext* ctx) const override { | ||
| OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "lerp"); | ||
| OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "lerp"); | ||
| OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "lerp"); | ||
| OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "lerp"); | ||
| | ||
| auto x_dims = ctx->GetInputDim("X"); | ||
| auto y_dims = ctx->GetInputDim("Y"); | ||
| auto w_dims = ctx->GetInputDim("Weight"); | ||
| framework::DDim out_dims; | ||
| out_dims = GetOutputDims(x_dims, y_dims); | ||
| if (w_dims.size() > 1 || w_dims[0] != 1) { | ||
| out_dims = GetOutputDims(out_dims, w_dims); | ||
| } | ||
| | ||
| ctx->SetOutputDim("Out", out_dims); | ||
| ctx->ShareLoD("X", /*->*/ "Out"); | ||
| } | ||
| | ||
| private: | ||
| framework::DDim GetOutputDims(const framework::DDim& s_dims, | ||
| const framework::DDim& l_dims) const { | ||
| if (s_dims.size() > l_dims.size()) { | ||
| return GetOutputDims(l_dims, s_dims); | ||
| } | ||
| std::vector<int64_t> shapes = framework::vectorize<int64_t>(l_dims); | ||
| for (int i = s_dims.size() - 1, j = l_dims.size() - 1; i >= 0; --i, --j) { | ||
| int64_t s = s_dims[i]; | ||
| int64_t l = l_dims[j]; | ||
| if (s != l) { | ||
| if (l == 1) { | ||
| shapes[j] = s; | ||
| } else if (s != 1) { | ||
| PADDLE_THROW(platform::errors::InvalidArgument( | ||
| "The shape of tensor a %s:%d must match shape of tensor b " | ||
| "%s:%d.", | ||
| s_dims.to_str(), i, l_dims.to_str(), j)); | ||
| } | ||
| } | ||
| } | ||
| return framework::make_ddim(shapes); | ||
| } | ||
| }; | ||
| | ||
| class LerpOpMaker : public framework::OpProtoAndCheckerMaker { | ||
| public: | ||
| void Make() override { | ||
| AddInput("X", "(Tensor), The input tensor of lerp op."); | ||
| AddInput("Y", "(Tensor), The input tensor of lerp op."); | ||
| AddInput("Weight", "(Tensor, optional), The input tensor of lerp op."); | ||
| AddOutput("Out", "(Tensor), The output tensor of lerp op."); | ||
| AddComment(R"DOC( | ||
| Lerp Operator. | ||
| | ||
| This operator is used to do a linear interpolation of input $X$ and $Y$ with $Weight$. | ||
| | ||
| The equation is: | ||
| | ||
| $$Out = X + Weight * (Y - X)$$ | ||
| | ||
| Both the input $X$ and $Y$ can carry the LoD (Level of Details) information, | ||
| or not. But the output only shares the LoD information with input $X$. | ||
| | ||
| )DOC"); | ||
| } | ||
| }; | ||
| | ||
| class LerpGradOp : public framework::OperatorWithKernel { | ||
| public: | ||
| using framework::OperatorWithKernel::OperatorWithKernel; | ||
| | ||
| void InferShape(framework::InferShapeContext* ctx) const override { | ||
| if (ctx->HasOutput(framework::GradVarName("X"))) { | ||
| ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); | ||
| } | ||
| if (ctx->HasOutput(framework::GradVarName("Y"))) { | ||
| ctx->SetOutputDim(framework::GradVarName("Y"), ctx->GetInputDim("Y")); | ||
| } | ||
| } | ||
| }; | ||
| | ||
| template <typename T> | ||
| class LerpOpGradMaker : public framework::SingleGradOpMaker<T> { | ||
| public: | ||
| using framework::SingleGradOpMaker<T>::SingleGradOpMaker; | ||
| | ||
| void Apply(GradOpPtr<T> op) const override { | ||
| op->SetType("lerp_grad"); | ||
| op->SetInput("X", this->Input("X")); | ||
| op->SetInput("Y", this->Input("Y")); | ||
| op->SetInput("Weight", this->Input("Weight")); | ||
| op->SetInput("Out", this->Output("Out")); | ||
| op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); | ||
| op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); | ||
| op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y")); | ||
| op->SetAttrMap(this->Attrs()); | ||
| } | ||
| }; | ||
| | ||
| DECLARE_INPLACE_OP_INFERER(LerpInplaceInferer, {"X", "Out"}); | ||
| | ||
| } // namespace operators | ||
| } // namespace paddle | ||
| | ||
| REGISTER_OPERATOR( | ||
| lerp, paddle::operators::LerpOp, paddle::operators::LerpOpMaker, | ||
| paddle::operators::LerpOpGradMaker<paddle::framework::OpDesc>, | ||
| paddle::operators::LerpOpGradMaker<paddle::imperative::OpBase>, | ||
| paddle::operators::LerpInplaceInferer); | ||
| | ||
| REGISTER_OPERATOR(lerp_grad, paddle::operators::LerpGradOp); | ||
| | ||
| REGISTER_OP_CPU_KERNEL( | ||
| lerp, | ||
| paddle::operators::LerpKernel<paddle::platform::CPUDeviceContext, float>, | ||
| paddle::operators::LerpKernel<paddle::platform::CPUDeviceContext, double>); | ||
| | ||
| REGISTER_OP_CPU_KERNEL( | ||
| lerp_grad, | ||
| paddle::operators::LerpGradKernel<paddle::platform::CPUDeviceContext, | ||
| float>, | ||
| paddle::operators::LerpGradKernel<paddle::platform::CPUDeviceContext, | ||
| double>); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,27 @@ | ||
| // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
| // | ||
| // Licensed under the Apache License, Version 2.0 (the "License"); | ||
| // you may not use this file except in compliance with the License. | ||
| // You may obtain a copy of the License at | ||
| // | ||
| // http://www.apache.org/licenses/LICENSE-2.0 | ||
| // | ||
| // Unless required by applicable law or agreed to in writing, software | ||
| // distributed under the License is distributed on an "AS IS" BASIS, | ||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| // See the License for the specific language governing permissions and | ||
| // limitations under the License. | ||
| | ||
| #include "paddle/fluid/operators/lerp_op.h" | ||
| | ||
| REGISTER_OP_CUDA_KERNEL( | ||
| lerp, | ||
| paddle::operators::LerpKernel<paddle::platform::CUDADeviceContext, float>, | ||
| paddle::operators::LerpKernel<paddle::platform::CUDADeviceContext, double>); | ||
| | ||
| REGISTER_OP_CUDA_KERNEL( | ||
| lerp_grad, | ||
| paddle::operators::LerpGradKernel<paddle::platform::CUDADeviceContext, | ||
| float>, | ||
| paddle::operators::LerpGradKernel<paddle::platform::CUDADeviceContext, | ||
| double>); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,217 @@ | ||
| // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
| // | ||
| // Licensed under the Apache License, Version 2.0 (the "License"); | ||
| // you may not use this file except in compliance with the License. | ||
| // You may obtain a copy of the License at | ||
| // | ||
| // http://www.apache.org/licenses/LICENSE-2.0 | ||
| // | ||
| // Unless required by applicable law or agreed to in writing, software | ||
| // distributed under the License is distributed on an "AS IS" BASIS, | ||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| // See the License for the specific language governing permissions and | ||
| // limitations under the License. | ||
| | ||
| #pragma once | ||
| #include "paddle/fluid/framework/op_registry.h" | ||
| #include "paddle/fluid/framework/operator.h" | ||
| | ||
| #ifdef _WIN32 | ||
| #ifndef NOMINMAX | ||
| #define NOMINMAX // msvc max/min macro conflict with std::min/max | ||
| #endif | ||
| #endif | ||
| | ||
| namespace paddle { | ||
| namespace operators { | ||
| | ||
| static framework::DDim ExtendDims2Rank(const framework::DDim& in_dims, | ||
| int rank) { | ||
| if (in_dims.size() == rank) { | ||
| return in_dims; | ||
| } | ||
| std::vector<int64_t> shapes(rank, 1); | ||
| for (int i = in_dims.size() - 1, j = rank - 1; i >= 0; --i, --j) { | ||
| shapes[j] = in_dims[i]; | ||
| } | ||
| return framework::make_ddim(shapes); | ||
| } | ||
| | ||
| template <size_t D> | ||
| static void GetBroadcastDims(const framework::DDim& in_dims, | ||
| const framework::DDim& out_dims, | ||
| Eigen::DSizes<int, D>* bcast_dims) { | ||
| for (size_t i = 0; i < D; ++i) { | ||
| if (in_dims[i] == out_dims[i]) { | ||
| (*bcast_dims)[i] = 1; | ||
| } else { | ||
| (*bcast_dims)[i] = std::max(in_dims[i], out_dims[i]); | ||
| } | ||
| } | ||
| } | ||
| | ||
| template <typename DeviceContext, typename T, size_t D> | ||
| static void LerpFunction(const framework::ExecutionContext& ctx) { | ||
| auto x = ctx.Input<framework::Tensor>("X"); | ||
| auto y = ctx.Input<framework::Tensor>("Y"); | ||
| auto w = ctx.Input<framework::Tensor>("Weight"); | ||
| auto out = ctx.Output<framework::Tensor>("Out"); | ||
| out->mutable_data<T>(ctx.GetPlace()); | ||
| | ||
| auto out_dims = out->dims(); | ||
| auto x_dims = ExtendDims2Rank(x->dims(), D); | ||
| auto y_dims = ExtendDims2Rank(y->dims(), D); | ||
| auto w_dims = ExtendDims2Rank(w->dims(), D); | ||
| Eigen::DSizes<int, D> x_bcast_dims; | ||
| Eigen::DSizes<int, D> y_bcast_dims; | ||
| Eigen::DSizes<int, D> w_bcast_dims; | ||
| GetBroadcastDims<D>(x_dims, out_dims, &x_bcast_dims); | ||
| GetBroadcastDims<D>(y_dims, out_dims, &y_bcast_dims); | ||
| GetBroadcastDims<D>(w_dims, out_dims, &w_bcast_dims); | ||
| | ||
| auto eigen_x = framework::EigenTensor<T, D>::From(*x, x_dims); | ||
| auto eigen_y = framework::EigenTensor<T, D>::From(*y, y_dims); | ||
| auto eigen_w = framework::EigenTensor<T, D>::From(*w, w_dims); | ||
| auto eigen_out = framework::EigenTensor<T, D>::From(*out); | ||
| | ||
| auto& place = *ctx.template device_context<DeviceContext>().eigen_device(); | ||
| eigen_out.device(place) = | ||
| eigen_x.broadcast(x_bcast_dims) + | ||
| eigen_w.broadcast(w_bcast_dims) * | ||
| (eigen_y.broadcast(y_bcast_dims) - eigen_x.broadcast(x_bcast_dims)); | ||
| } | ||
| | ||
| template <typename DeviceContext, typename T, size_t D> | ||
| static void LerpGradFunction(const framework::ExecutionContext& ctx) { | ||
| auto w = ctx.Input<framework::Tensor>("Weight"); | ||
| auto dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); | ||
| auto dx = ctx.Output<framework::Tensor>(framework::GradVarName("X")); | ||
| auto dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y")); | ||
| | ||
| auto dout_dims = dout->dims(); | ||
| auto dx_dims = ExtendDims2Rank(dx->dims(), D); | ||
| auto dy_dims = ExtendDims2Rank(dy->dims(), D); | ||
| auto w_dims = ExtendDims2Rank(w->dims(), D); | ||
| Eigen::DSizes<int, D> dx_bcast_dims; | ||
| Eigen::DSizes<int, D> dy_bcast_dims; | ||
| Eigen::DSizes<int, D> w_bcast_dims; | ||
| GetBroadcastDims<D>(dx_dims, dout_dims, &dx_bcast_dims); | ||
| GetBroadcastDims<D>(dy_dims, dout_dims, &dy_bcast_dims); | ||
| GetBroadcastDims<D>(w_dims, dout_dims, &w_bcast_dims); | ||
| | ||
| auto eigen_w = framework::EigenTensor<T, D>::From(*w, w_dims); | ||
| auto eigen_dout = framework::EigenTensor<T, D>::From(*dout); | ||
| | ||
| Eigen::DSizes<int, D * 2> dx_reshape_dims; | ||
| Eigen::DSizes<int, D * 2> dy_reshape_dims; | ||
| Eigen::DSizes<int, D> reduce_dims; | ||
| for (int i = 0; i < dout_dims.size(); ++i) { | ||
| dx_reshape_dims[2 * i] = dx_bcast_dims[i]; | ||
| dx_reshape_dims[2 * i + 1] = dx_dims[i]; | ||
| dy_reshape_dims[2 * i] = dy_bcast_dims[i]; | ||
| dy_reshape_dims[2 * i + 1] = dy_dims[i]; | ||
| reduce_dims[i] = 2 * i; | ||
| } | ||
| | ||
| auto& place = *ctx.template device_context<DeviceContext>().eigen_device(); | ||
| | ||
| if (dx) { | ||
| dx->mutable_data<T>(ctx.GetPlace()); | ||
| auto eigen_dx = framework::EigenTensor<T, D>::From(*dx, dx_dims); | ||
| auto eigen_expr = (1 - eigen_w.broadcast(w_bcast_dims)) * eigen_dout; | ||
| eigen_dx.device(place) = eigen_expr.reshape(dx_reshape_dims) | ||
| .sum(reduce_dims) | ||
| .reshape(eigen_dx.dimensions()); | ||
| } | ||
| if (dy) { | ||
| dy->mutable_data<T>(ctx.GetPlace()); | ||
| auto eigen_dy = framework::EigenTensor<T, D>::From(*dy, dy_dims); | ||
| auto eigen_expr = eigen_w.broadcast(w_bcast_dims) * eigen_dout; | ||
| eigen_dy.device(place) = eigen_expr.reshape(dy_reshape_dims) | ||
| .sum(reduce_dims) | ||
| .reshape(eigen_dy.dimensions()); | ||
| } | ||
| } | ||
| | ||
| template <typename DeviceContext, typename T> | ||
| class LerpKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| int rank = ctx.Output<framework::Tensor>("Out")->dims().size(); | ||
| PADDLE_ENFORCE_GE( | ||
| rank, 1, | ||
| platform::errors::InvalidArgument( | ||
| "The number of dimensions for LerpOp must be " | ||
| "greater than or equal to 1, but the value received is %d.", | ||
| rank)); | ||
| PADDLE_ENFORCE_LE( | ||
| rank, 6, platform::errors::InvalidArgument( | ||
| "The number of dimensions for LerpOp must be " | ||
| "less than or equal to 6, but the value received is %d.", | ||
| rank)); | ||
| switch (rank) { | ||
| case 1: | ||
| LerpFunction<DeviceContext, T, 1>(ctx); | ||
| break; | ||
| case 2: | ||
| LerpFunction<DeviceContext, T, 2>(ctx); | ||
| break; | ||
| case 3: | ||
| LerpFunction<DeviceContext, T, 3>(ctx); | ||
| break; | ||
| case 4: | ||
| LerpFunction<DeviceContext, T, 4>(ctx); | ||
| break; | ||
| case 5: | ||
| LerpFunction<DeviceContext, T, 5>(ctx); | ||
| break; | ||
| case 6: | ||
| LerpFunction<DeviceContext, T, 6>(ctx); | ||
| break; | ||
| } | ||
| } | ||
| }; | ||
| | ||
| template <typename DeviceContext, typename T> | ||
| class LerpGradKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| int rank = ctx.Input<framework::Tensor>(framework::GradVarName("Out")) | ||
| ->dims() | ||
| .size(); | ||
| PADDLE_ENFORCE_GE( | ||
| rank, 1, | ||
| platform::errors::InvalidArgument( | ||
| "The number of dimensions for LerpGradOp must be " | ||
| "greater than or equal to 1, but the value received is %d.", | ||
| rank)); | ||
| PADDLE_ENFORCE_LE( | ||
| rank, 6, platform::errors::InvalidArgument( | ||
| "The number of dimensions for LerpGradOp must be " | ||
| "less than or equal to 6, but the value received is %d.", | ||
| rank)); | ||
| switch (rank) { | ||
| case 1: | ||
| LerpGradFunction<DeviceContext, T, 1>(ctx); | ||
| break; | ||
| case 2: | ||
| LerpGradFunction<DeviceContext, T, 2>(ctx); | ||
| break; | ||
| case 3: | ||
| LerpGradFunction<DeviceContext, T, 3>(ctx); | ||
| break; | ||
| case 4: | ||
| LerpGradFunction<DeviceContext, T, 4>(ctx); | ||
| break; | ||
| case 5: | ||
| LerpGradFunction<DeviceContext, T, 5>(ctx); | ||
| break; | ||
| case 6: | ||
| LerpGradFunction<DeviceContext, T, 6>(ctx); | ||
| break; | ||
| } | ||
| } | ||
| }; | ||
| | ||
| } // namespace operators | ||
| } // namespace paddle | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit. This suggestion is invalid because no changes were made to the code. Suggestions cannot be applied while the pull request is closed. Suggestions cannot be applied while viewing a subset of changes. Only one suggestion per line can be applied in a batch. Add this suggestion to a batch that can be applied as a single commit. Applying suggestions on deleted lines is not supported. You must change the existing code in this line in order to create a valid suggestion. Outdated suggestions cannot be applied. This suggestion has been applied or marked resolved. Suggestions cannot be applied from pending reviews. Suggestions cannot be applied on multi-line comments. Suggestions cannot be applied while the pull request is queued to merge. Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.