Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -50,8 +50,11 @@ def __init__(self, clip, hcg):
@imperative_base.no_grad
def _dygraph_clip(self, params_grads):
params_and_grads = []
sum_square_list_dist = []
sum_square_list_not_dist = []

sum_square_dist_fp16 = []
sum_square_dist_fp32 = []
sum_square_not_dist_fp16 = []
sum_square_not_dist_fp32 = []

for p, g in params_grads:
if g is None:
Expand All @@ -71,20 +74,51 @@ def _dygraph_clip(self, params_grads):

if not_shared_enable:
if p.is_distributed:
sum_square_list_dist.append(sum_square)
if p.dtype == paddle.float16:
sum_square_dist_fp16.append(sum_square)
elif p.dtype == paddle.float32:
sum_square_dist_fp32.append(sum_square)
else:
sum_square_list_not_dist.append(sum_square)

global_norm_var_dist = layers.concat(sum_square_list_dist) if len(
sum_square_list_dist) != 0 else layers.concat(
[paddle.to_tensor([0.])])
global_norm_var_dist = layers.reduce_sum(global_norm_var_dist)

global_norm_var_not_dist = layers.concat(
sum_square_list_not_dist) if len(
sum_square_list_not_dist) != 0 else layers.concat(
[paddle.to_tensor([0.])])
global_norm_var_not_dist = layers.reduce_sum(global_norm_var_not_dist)
if p.dtype == paddle.float16:
sum_square_not_dist_fp16.append(sum_square)
elif p.dtype == paddle.float32:
sum_square_not_dist_fp32.append(sum_square)

# global norm of distributed FP16 params_and_grads
if len(sum_square_dist_fp16) == 0:
global_norm_dist_fp16 = paddle.to_tensor([0.], dtype=paddle.float32)
else:
global_norm_dist_fp16 = layers.concat(sum_square_dist_fp16)
global_norm_dist_fp16 = layers.reduce_sum(global_norm_dist_fp16)
global_norm_dist_fp16 = paddle.cast(
global_norm_dist_fp16, dtype=paddle.float32)

# global norm of non-distributed FP16 params_and_grads
if len(sum_square_not_dist_fp16) == 0:
global_norm_not_dist_fp16 = paddle.to_tensor(
[0.], dtype=paddle.float32)
else:
global_norm_not_dist_fp16 = layers.concat(sum_square_not_dist_fp16)
global_norm_not_dist_fp16 = layers.reduce_sum(
global_norm_not_dist_fp16)
global_norm_not_dist_fp16 = paddle.cast(
global_norm_not_dist_fp16, dtype=paddle.float32)

# global norm of distributed FP32 params_and_grads
global_norm_dist_fp32 = layers.concat(sum_square_dist_fp32) if len(
sum_square_dist_fp32) != 0 else paddle.to_tensor(
[0.], dtype=paddle.float32)
global_norm_dist_fp32 = layers.reduce_sum(global_norm_dist_fp32)

# global norm of non-distributed FP32 params_and_grads
global_norm_not_dist_fp32 = layers.concat(
sum_square_not_dist_fp32) if len(
sum_square_not_dist_fp32) != 0 else paddle.to_tensor(
[0.], dtype=paddle.float32)
global_norm_not_dist_fp32 = layers.reduce_sum(global_norm_not_dist_fp32)

global_norm_var_dist = global_norm_dist_fp16 + global_norm_dist_fp32
global_norm_var_not_dist = global_norm_not_dist_fp16 + global_norm_not_dist_fp32

# add all reduce to get global norm of distributed params_and_grads
if self._hcg.get_model_parallel_world_size() > 1:
Expand All @@ -105,22 +139,26 @@ def _dygraph_clip(self, params_grads):
global_norm_var_not_dist,
group=self._hcg.get_sharding_parallel_group())

global_norm_var = layers.sqrt(global_norm_var_dist +
global_norm_var_not_dist)
global_norm_var_fp32 = layers.sqrt(global_norm_var_dist +
global_norm_var_not_dist)

max_global_norm = layers.fill_constant(
shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm)
shape=[1], dtype=global_norm_var_fp32.dtype, value=self.clip_norm)
clip_var = layers.elementwise_div(
x=max_global_norm,
y=layers.elementwise_max(
x=global_norm_var, y=max_global_norm))
x=global_norm_var_fp32, y=max_global_norm))
clip_var_fp16 = paddle.cast(clip_var, paddle.float16)
for p, g in params_grads:
if g is None:
continue
if getattr(p, 'need_clip', True) is False:
params_and_grads.append((p, g))
continue
new_grad = layers.elementwise_mul(x=g, y=clip_var)
if p.dtype == paddle.float16:
new_grad = layers.elementwise_mul(x=g, y=clip_var_fp16)
else:
new_grad = layers.elementwise_mul(x=g, y=clip_var)
params_and_grads.append((p, new_grad))

return params_and_grads
Expand Down
59 changes: 59 additions & 0 deletions python/paddle/fluid/tests/unittests/hybrid_parallel_mp_fp16.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import paddle
import numpy as np
from hybrid_parallel_mp_model import TestDistMPTraning
import paddle.distributed.fleet as fleet
import unittest


class TestMPFP16(TestDistMPTraning):
def build_optimizer(self, model):
grad_clip = paddle.nn.ClipGradByGlobalNorm(1.0)
scheduler = paddle.optimizer.lr.ExponentialDecay(
learning_rate=0.001, gamma=0.999, verbose=True)
optimizer = paddle.optimizer.SGD(scheduler,
grad_clip=grad_clip,
parameters=model.parameters())

model, optimizer = paddle.amp.decorate(
models=model,
optimizers=optimizer,
level='O2',
save_dtype='float32')

return optimizer

def train_batch(self, batch, model, optimizer, is_mp):
scaler = paddle.amp.GradScaler(init_loss_scaling=5160)
if is_mp:
scaler = fleet.distributed_scaler(scaler)
with paddle.amp.auto_cast(enable=True, level="O2"):
output = model(batch)
loss = output.mean()

scaled = scaler.scale(loss)
scaled.backward()
scaler.step(optimizer)
scaler.update()
optimizer.clear_grad()
return scaled


if __name__ == "__main__":
unittest.main()
4 changes: 4 additions & 0 deletions python/paddle/fluid/tests/unittests/hybrid_parallel_pp_amp.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,11 +61,14 @@ def test_pp_model(self):
rank_id = dist.get_rank()
set_random_seed(1024, dp_id, rank_id)

grad_clip = paddle.nn.ClipGradByGlobalNorm(1.0)

#construct model a
model_a = AlexNet(10)
scheduler_a = paddle.optimizer.lr.PiecewiseDecay(
boundaries=[2], values=[0.001, 0.002], verbose=True)
optimizer_a = paddle.optimizer.SGD(learning_rate=scheduler_a,
grad_clip=grad_clip,
parameters=model_a.parameters())

scaler_a = paddle.amp.GradScaler(init_loss_scaling=2**5)
Expand All @@ -80,6 +83,7 @@ def test_pp_model(self):
scheduler_b = paddle.optimizer.lr.PiecewiseDecay(
boundaries=[2], values=[0.001, 0.002], verbose=True)
optimizer_b = paddle.optimizer.SGD(learning_rate=scheduler_b,
grad_clip=grad_clip,
parameters=model_b.parameters())
model_b = fleet.distributed_model(model_b)
optimizer_b = fleet.distributed_optimizer(optimizer_b)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -61,11 +61,14 @@ def test_pp_model(self):
rank_id = dist.get_rank()
set_random_seed(1024, dp_id, rank_id)

grad_clip = paddle.nn.ClipGradByGlobalNorm(1.0)

#construct model a
model_a = AlexNet(10)
scheduler_a = paddle.optimizer.lr.PiecewiseDecay(
boundaries=[2], values=[0.001, 0.002], verbose=True)
optimizer_a = paddle.optimizer.SGD(learning_rate=scheduler_a,
grad_clip=grad_clip,
parameters=model_a.parameters())

scaler_a = paddle.amp.GradScaler(init_loss_scaling=2**5)
Expand All @@ -75,6 +78,7 @@ def test_pp_model(self):
scheduler_b = paddle.optimizer.lr.PiecewiseDecay(
boundaries=[2], values=[0.001, 0.002], verbose=True)
optimizer_b = paddle.optimizer.SGD(learning_rate=scheduler_b,
grad_clip=grad_clip,
parameters=model_b.parameters())

param_len = len(model_a.parameters())
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,9 @@ def test_hybrid_parallel_mp_model(self):
def test_hybrid_parallel_mp_amp(self):
self.run_mnist_2gpu('hybrid_parallel_mp_amp.py')

def test_hybrid_parallel_mp_fp16(self):
self.run_mnist_2gpu('hybrid_parallel_mp_fp16.py')

def test_hybrid_parallel_mp_clip_grad(self):
self.run_mnist_2gpu('hybrid_parallel_mp_clip_grad.py')

Expand Down