-   Notifications  You must be signed in to change notification settings 
- Fork 5.9k
Closed
Description
In the mse_cost in Layers.py. We see the description is 
However, when I check the implementation it calls sumofsquarediff, which does not do a normalization of layer size N. I think it is a wrong description of the mse_cost layer ?
@wrap_name_default() @layer_support() def mse_cost(input, label, weight=None, name=None, layer_attr=None): """  mean squared error cost:   .. math::  $\frac{1}{N}\sum_{i=1}^N(t _i- y_i)^2$   :param name: layer name.  :type name: basestring  :param input: Network prediction.  :type input: LayerOutput  :param label: Data label.  :type label: LayerOutput  :param weight: The weight affects the cost, namely the scale of cost.  It is an optional argument.  :type weight: LayerOutput  :param layer_attr: layer's extra attribute.  :type layer_attr: ExtraLayerAttribute  :return: LayerOutput object.  :rtype: LayerOutput  """ ipts, parents = __cost_input__(input, label, weight) Layer( inputs=ipts, type="square_error", name=name, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name, LayerType.COST, parents=parents, size=1)Metadata
Metadata
Assignees
Labels
No labels