The langchain-postgres
package implementations of core LangChain abstractions using Postgres
.
The package is released under the MIT license.
Feel free to use the abstraction as provided or else modify them / extend them as appropriate for your own application.
The package currently only supports the psycogp3 driver.
pip install -U langchain-postgres
The LangGraph checkpointer can be used to add memory to your LangGraph application.
PostgresSaver
is an implementation of the checkpointer saver using Postgres as the backend.
Currently, only the psycopg3 driver is supported.
Sync usage:
from psycopg_pool import ConnectionPool from langchain_postgres import ( PostgresSaver, PickleCheckpointSerializer ) pool = ConnectionPool( # Example configuration conninfo="postgresql://langchain:langchain@localhost:6024/langchain", max_size=20, ) PostgresSaver.create_tables(pool) checkpointer = PostgresSaver( serializer=PickleCheckpointSerializer(), sync_connection=pool, ) # Set up the langgraph workflow with the checkpointer workflow = ... # Fill in with your workflow app = workflow.compile(checkpointer=checkpointer) # Use with the sync methods of `app` (e.g., `app.stream()) pool.close() # Remember to close the connection pool.
Async usage:
from psycopg_pool import AsyncConnectionPool from langchain_postgres import ( PostgresSaver, PickleCheckpointSerializer ) pool = AsyncConnectionPool( # Example configuration conninfo="postgresql://langchain:langchain@localhost:6024/langchain", max_size=20, ) # Create the tables in postgres (only needs to be done once) await PostgresSaver.acreate_tables(pool) checkpointer = PostgresSaver( serializer=PickleCheckpointSerializer(), async_connection=pool, ) # Set up the langgraph workflow with the checkpointer workflow = ... # Fill in with your workflow app = workflow.compile(checkpointer=checkpointer) # Use with the async methods of `app` (e.g., `app.astream()`) await pool.close() # Remember to close the connection pool.
If testing with the postgres checkpointer it may be useful to both create and drop the tables before and after the tests.
from psycopg_pool import ConnectionPool from langchain_postgres import ( PostgresSaver ) with ConnectionPool( # Example configuration conninfo="postgresql://langchain:langchain@localhost:6024/langchain", max_size=20, ) as conn: PostgresSaver.create_tables(conn) PostgresSaver.drop_tables(conn) # Run your unit tests with langgraph
The chat message history abstraction helps to persist chat message history in a postgres table.
PostgresChatMessageHistory is parameterized using a table_name
and a session_id
.
The table_name
is the name of the table in the database where the chat messages will be stored.
The session_id
is a unique identifier for the chat session. It can be assigned by the caller using uuid.uuid4()
.
import uuid from langchain_core.messages import SystemMessage, AIMessage, HumanMessage from langchain_postgres import PostgresChatMessageHistory import psycopg # Establish a synchronous connection to the database # (or use psycopg.AsyncConnection for async) conn_info = ... # Fill in with your connection info sync_connection = psycopg.connect(conn_info) # Create the table schema (only needs to be done once) table_name = "chat_history" PostgresChatMessageHistory.create_tables(sync_connection, table_name) session_id = str(uuid.uuid4()) # Initialize the chat history manager chat_history = PostgresChatMessageHistory( table_name, session_id, sync_connection=sync_connection ) # Add messages to the chat history chat_history.add_messages([ SystemMessage(content="Meow"), AIMessage(content="woof"), HumanMessage(content="bark"), ]) print(chat_history.messages)
See example for the PGVector vectorstore here