Skip to content

Lemonzhoumeng/SC-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 

Repository files navigation

SC-Net for Scribble-supervised Medical Image Segmentation

Pytorch implementation of our Weakly Supervised Medical Image Segmentation via Superpixel-guided Scribble Walking and Class-wise Contrastive Regularization (MICCAI 2023).

Paper

Weakly Supervised Medical Image Segmentation via Superpixel-guided Scribble Walking and Class-wise Contrastive Regularization MICCAI 2023

Dataset

  • The ACDC dataset with mask annotations can be downloaded from: ACDC.
  • The Scribble annotations of ACDC can be downloaded from: Scribble.
  • The data processing code Link the pre-processed ACDC data Link.

Requirements

Some important required packages include:

  • Pytorch version >=0.4.1.
  • TensorBoardX
  • Python >= 3.6
  • Efficientnet-Pytorch pip install efficientnet_pytorch
  • Some basic python packages such as Numpy, Scikit-image, SimpleITK, Scipy ......

Follow official guidance to install Pytorch.

Usage

  1. Clone this project.
git clone https://github.com/Lemonzhoumeng/SC-Net cd SC-Net 
  1. Data pre-processing or directly download the pre-processed data.
cd code python dataloaders/acdc_data_processing.py 
  1. Superpixel-guided Scribble Walking to augment the scribble labels
python add_super.py 

Or download our augmented labels from Google drive.

  1. Train the model
python train_superpixel_dual_contrastive.py --fold {} 
  1. Test the model
python test_2D_contrastive_superpixel.py 

Acknowledgement

The code is modified from WSL4MIS.

Citation

If you use this codebase in your research, please cite the following paper:

@InProceedings{Zhou2023scnet,	author={Meng Zhou, Zhe Xu, Kang Zhou, Kai-yu Tong},	title={Weakly Supervised Medical Image Segmentation via Superpixel-guided Scribble Walking and Class-wise Contrastive Regularization},	booktitle={MICCAI},	year={2023}} 

Note

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages