Skip to content

GradientSpaces/ReStyle3D

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

13 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐ŸŽจ ReStyle3D: Scene-Level Appearance Transfer with Semantic Correspondences

ACM SIGGRAPH 2025

ProjectPage arXiv Hugging Face (LCM) Space License

Official implementation of the paper titled "Scene-level Appearance Transfer with Semantic Correspondences".

Liyuan Zhu1, Shengqu Cai1,*, Shengyu Huang2,*, Gordon Wetzstein1, Naji Khosravan3, Iro Armeni1

1Stanford University, 2NVIDIA Research, 3Zillow Group | * denotes equal contribution

@inproceedings{zhu2025_restyle3d, author = {Liyuan Zhu and Shengqu Cai and Shengyu Huang and Gordon Wetzstein and Naji Khosravan and Iro Armeni}, title = {Scene-level Appearance Transfer with Semantic Correspondences}, booktitle = {ACM SIGGRAPH 2025 Conference Papers}, year = {2025}, }

We introduce ReStyle3D, a novel framework for scene-level appearance transfer from a single style image to a real-world scene represented by multiple views. This method combines explicit semantic correspondences with multi-view consistency to achieve precise and coherent stylization.

๐Ÿ› ๏ธ Setup

โœ… Tested Environments

  • Ubuntu 22.04 LTS, Python 3.10.15, CUDA 12.2, GeForce RTX 4090/3090

  • CentOS Linux 7, Python 3.12.1, CUDA 12.4, NVIDIA A100

๐Ÿ“ฆ Repository

git clone git@github.com:GradientSpaces/ReStyle3D.git cd ReStyle3D 

๐Ÿ’ป Installation

conda create -n restyle3d python=3.10 conda activate restyle3d pip install -r requirements.txt 

๐Ÿ“ฆ Pretrained Checkpoints

Download the pretrained models by running:

bash scripts/download_weights.sh 

๐Ÿš€ Usage

We download our dataset:

bash scripts/download_data.sh 

๐ŸŽฎ Demo (Single-view)

We include 3 demo images to run semantic appearance transfer:

python restyle_image.py 

๐ŸŽจ Stylizing Multi-view Scenes

To run on a single scene and style:

python restyle_scene.py \ --scene_path demo/scene_transfer/bedroom_0/ \ --scene_type bedroom \ --style_path demo/design_styles/bedroom/pexels-itsterrymag-2631746 

๐Ÿ“‚ Dataset: SceneTransfer

We organize the data into two components:

  1. Interior Scenes: Multi-view real-world scans with aligned images, depth, and semantic segmentations.
๐Ÿ“ data/ โ””โ”€โ”€ interiors/ โ”œโ”€โ”€ bedroom/ โ”‚ โ”œโ”€โ”€ 0/ โ”‚ โ”‚ โ”œโ”€โ”€ images/ # multi-view RGB images โ”‚ โ”‚ โ”œโ”€โ”€ depth/ # depth maps โ”‚ โ”‚ โ””โ”€โ”€ seg_dict/ # semantic segmentation dictionaries โ”‚ โ””โ”€โ”€ 1/ โ”‚ โ””โ”€โ”€ ... โ”œโ”€โ”€ living_room/ โ””โ”€โ”€ kitchen/ 
  1. Design Styles: Style examplars with precomputed semantic segmentation.
๐Ÿ“ data/ โ””โ”€โ”€ design_styles/ โ”œโ”€โ”€ bedroom/ โ”‚ โ””โ”€โ”€ pexels-itsterrymag-2631746/ โ”‚ โ”œโ”€โ”€ image.jpg # style reference image โ”‚ โ”œโ”€โ”€ seg_dict.pth # semantic segmentation dictionary โ”‚ โ””โ”€โ”€ seg.png # segmentation visualization โ”œโ”€โ”€ living_room/ โ””โ”€โ”€ kitchen/ 

๐Ÿšง TODO

  • Release full dataset
  • Release evaluation code
  • Customize dataset

๐Ÿ™ Acknowledgement

Our codebase is built on top of the following works:

We appreciate the open-source efforts from the authors.

๐Ÿ“ซ Contact

If you encounter any issues or have questions, feel free to reach out: Liyuan Zhu.

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •