Official implementation of the paper titled "Scene-level Appearance Transfer with Semantic Correspondences".
Liyuan Zhu1, Shengqu Cai1,*, Shengyu Huang2,*, Gordon Wetzstein1, Naji Khosravan3, Iro Armeni1
1Stanford University, 2NVIDIA Research, 3Zillow Group | * denotes equal contribution
@inproceedings{zhu2025_restyle3d, author = {Liyuan Zhu and Shengqu Cai and Shengyu Huang and Gordon Wetzstein and Naji Khosravan and Iro Armeni}, title = {Scene-level Appearance Transfer with Semantic Correspondences}, booktitle = {ACM SIGGRAPH 2025 Conference Papers}, year = {2025}, }We introduce ReStyle3D, a novel framework for scene-level appearance transfer from a single style image to a real-world scene represented by multiple views. This method combines explicit semantic correspondences with multi-view consistency to achieve precise and coherent stylization.
-
Ubuntu 22.04 LTS, Python 3.10.15, CUDA 12.2, GeForce RTX 4090/3090
-
CentOS Linux 7, Python 3.12.1, CUDA 12.4, NVIDIA A100
git clone git@github.com:GradientSpaces/ReStyle3D.git cd ReStyle3D conda create -n restyle3d python=3.10 conda activate restyle3d pip install -r requirements.txt Download the pretrained models by running:
bash scripts/download_weights.sh We download our dataset:
bash scripts/download_data.sh We include 3 demo images to run semantic appearance transfer:
python restyle_image.py To run on a single scene and style:
python restyle_scene.py \ --scene_path demo/scene_transfer/bedroom_0/ \ --scene_type bedroom \ --style_path demo/design_styles/bedroom/pexels-itsterrymag-2631746 We organize the data into two components:
- Interior Scenes: Multi-view real-world scans with aligned images, depth, and semantic segmentations.
๐ data/ โโโ interiors/ โโโ bedroom/ โ โโโ 0/ โ โ โโโ images/ # multi-view RGB images โ โ โโโ depth/ # depth maps โ โ โโโ seg_dict/ # semantic segmentation dictionaries โ โโโ 1/ โ โโโ ... โโโ living_room/ โโโ kitchen/ - Design Styles: Style examplars with precomputed semantic segmentation.
๐ data/ โโโ design_styles/ โโโ bedroom/ โ โโโ pexels-itsterrymag-2631746/ โ โโโ image.jpg # style reference image โ โโโ seg_dict.pth # semantic segmentation dictionary โ โโโ seg.png # segmentation visualization โโโ living_room/ โโโ kitchen/ - Release full dataset
- Release evaluation code
- Customize dataset
Our codebase is built on top of the following works:
We appreciate the open-source efforts from the authors.
If you encounter any issues or have questions, feel free to reach out: Liyuan Zhu.