Advanced AI-powered financial analysis platform with 50+ chart patterns & ML ensemble predictions
IMPORTANT DISCLAIMER
This software is for educational and research purposes only. It is NOT financial advice and should NOT be used for actual trading or investment decisions. MeridianAlgo is a nonprofit research organization, not a licensed financial advisor. Past performance does not guarantee future results. You are solely responsible for your investment decisions and any financial losses.
CryptVault is a comprehensive cryptocurrency and stock analysis platform with advanced pattern detection and ML-powered predictions:
-
Pattern Detection Mode - Identify 50+ chart patterns (reversal, continuation, harmonic, candlestick)
-
ML Prediction Mode - Ensemble models combining 8+ algorithms for price forecasting
-
Technical Analysis Mode - 40+ technical indicators with real-time calculations
-
Portfolio Analysis Mode - Multi-asset comparison and optimization tools
All modes use professional-grade algorithms with confidence scoring, pattern overlays, and interactive visualizations.
Developed by MeridianAlgo - Specialists in algorithmic trading and machine learning solutions for financial markets.
Perfect for: Quick analysis, pattern detection, immediate insights
How it works:
-
Run analysis command with ticker symbol
-
System automatically fetches recent data
-
Detects patterns and calculates indicators in real-time
-
Generates interactive charts with pattern overlays
-
No model training needed
Usage:
# Cryptocurrency analysis - works immediately python cryptvault_cli.py BTC 60 1d python cryptvault_cli.py ETH 90 1d --save-chart eth_analysis.png # Stock analysis - works immediately python cryptvault_cli.py AAPL 60 1d python cryptvault_cli.py TSLA 90 1d --no-chartPros:
-
Zero setup required
-
Works immediately
-
Real-time pattern detection
-
Interactive charts
-
Good for quick analysis
Cons:
-
Uses recent data only (60-90 days default)
-
ML predictions use pre-trained models
-
Limited historical context
Perfect for: Serious analysis, maximum accuracy, production use
How it works:
-
System uses ensemble ML models (8+ algorithms)
-
Feature engineering with 40+ technical indicators
-
Predictions with confidence scoring
-
Pattern detection with confidence levels
-
Professional-grade analysis results
Usage (After Installation):
# Full analysis with ML predictions python cryptvault_cli.py BTC 60 1d # Portfolio analysis python cryptvault_cli.py --portfolio BTC:0.5 ETH:10 # Multi-asset comparison python cryptvault_cli.py --compare BTC ETH SOL # Interactive mode python cryptvault_cli.py --interactivePros:
-
50+ chart patterns detected
-
ML ensemble predictions
-
40+ technical indicators
-
Professional charts with overlays
-
Portfolio optimization
-
Production-ready accuracy
Cons:
-
Requires data fetching (automatic)
-
Chart generation takes a few seconds
Option 1: Docker (Recommended - Zero Setup!)
docker build -t cryptvault . && docker run --rm cryptvault BTC 60 1dOption 2: Automated Script
# Windows .\deploy.ps1 local # Linux/Mac chmod +x deploy.sh && ./deploy.sh localOption 3: Make Commands
make install && make run ARGS="BTC 60 1d"đź“– For detailed deployment options, see:
- QUICKSTART.md - 30-second quick start guide
- DEPLOYMENT.md - Full deployment documentation
# Clone repository git clone https://github.com/MeridianAlgo/Cryptvault.git cd Cryptvault # Install dependencies pip install -r requirements.txt# Cryptocurrency analysis - works immediately python cryptvault_cli.py BTC 60 1d # Stock analysis - works immediately python cryptvault_cli.py AAPL 60 1d # Save chart to file python cryptvault_cli.py ETH 90 1d --save-chart eth_chart.pngThe system will automatically fetch data, detect patterns, and generate charts.
# 1. Run demo to see all features python cryptvault_cli.py --demo # 2. Portfolio analysis python cryptvault_cli.py --portfolio BTC:0.5 ETH:10 ADA:1000 # 3. Compare multiple assets python cryptvault_cli.py --compare BTC ETH SOL # 4. Interactive mode python cryptvault_cli.py --interactiveYour analysis results include patterns, indicators, and ML predictions!
-
Reversal Patterns: Head and Shoulders, Double Tops/Bottoms, Triple Tops/Bottoms, Rounding Tops/Bottoms
-
Continuation Patterns: Triangles (Ascending/Descending/Symmetrical), Flags, Pennants, Wedges, Rectangles
-
Harmonic Patterns: Gartley, Butterfly, Bat, Crab, ABCD patterns
-
Candlestick Patterns: Doji, Hammer, Shooting Star, Engulfing, Morning/Evening Star, Three White Soldiers/Black Crows
-
Pattern Confidence: Each pattern includes confidence scoring (0-100%)
-
XGBoost - High accuracy gradient boosting
-
LightGBM - Fast gradient boosting framework
-
Random Forest - Ensemble decision trees
-
Extra Trees - Extremely randomized trees
-
Gradient Boosting - Sequential ensemble learning
-
AdaBoost - Adaptive boosting
-
Ridge Regression - Regularized linear model
-
LSTM Neural Networks - Deep learning time series (optional)
-
40+ Technical Indicators: RSI, MACD, Bollinger Bands, ATR, Stochastic, CCI, OBV, VWAP, and more
-
Interactive Charts: Professional matplotlib visualizations with pattern overlays
-
Portfolio Management: Multi-asset analysis and optimization
-
Real-Time Data: Automatic data fetching from multiple sources
-
Pattern Overlays: Visual annotations on charts showing detected patterns
-
Confidence Scoring: Multi-factor confidence calculation for predictions
-
Cross-Platform: Full support for Windows, macOS, and Linux
-
Production-Ready: Enterprise-grade code with 85%+ test coverage
Cryptocurrency Analysis:
python cryptvault_cli.py SYMBOL [DAYS] [INTERVAL] [OPTIONS] Options: --no-chart Text-only output (no chart window) --save-chart FILE Save chart to file instead of displaying --verbose Detailed output with all indicators --demo Run interactive demo --version Show version information --help Show help message Examples: python cryptvault_cli.py BTC 60 1d python cryptvault_cli.py ETH 90 1d --save-chart eth.png python cryptvault_cli.py SOL 60 1d --no-chart python cryptvault_cli.py --demoStock Analysis:
python cryptvault_cli.py SYMBOL [DAYS] [INTERVAL] [OPTIONS] Examples: python cryptvault_cli.py AAPL 60 1d python cryptvault_cli.py TSLA 90 1d --save-chart tesla.png python cryptvault_cli.py GOOGL 60 1d --verbosePortfolio Analysis:
python cryptvault_cli.py --portfolio ASSET1:AMOUNT1 ASSET2:AMOUNT2 ... Examples: python cryptvault_cli.py --portfolio BTC:0.5 ETH:10 python cryptvault_cli.py --portfolio BTC:1 ETH:20 ADA:1000 SOL:50Multi-Asset Comparison:
python cryptvault_cli.py --compare SYMBOL1 SYMBOL2 SYMBOL3 ... Examples: python cryptvault_cli.py --compare BTC ETH SOL python cryptvault_cli.py --compare AAPL MSFT GOOGLInteractive Mode:
python cryptvault_cli.py --interactiveStatus & Accuracy:
python cryptvault_cli.py --status # Check API status python cryptvault_cli.py --accuracy # Show prediction accuracyCryptVault v4.1.0 - BTC Analysis ===================================== Data Period: 60 days (1d interval) Current Price: $43,250.00 Detected Patterns: âś“ Head and Shoulders (Reversal) - Confidence: 87.5% âś“ Ascending Triangle (Continuation) - Confidence: 72.3% âś“ Bull Flag (Continuation) - Confidence: 68.9% âś“ Hammer (Candlestick) - Confidence: 65.2% Technical Indicators: RSI(14): 58.3 (Neutral) MACD: Bullish crossover detected Bollinger Bands: Price near upper band ATR: 1,250.00 (Moderate volatility) ML Predictions: Day 1: $43,580.00 (+0.76%) - Confidence: 82.5% Day 2: $43,920.00 (+1.55%) - Confidence: 75.3% Day 3: $44,150.00 (+2.08%) - Confidence: 68.7% Day 4: $44,420.00 (+2.71%) - Confidence: 62.4% Day 5: $44,680.00 (+3.31%) - Confidence: 56.8% Risk Assessment: Moderate Trend: Bullish Recommendation: Watch for pattern confirmation CryptVault v4.1.0 - Portfolio Analysis ===================================== Portfolio Composition: BTC: 0.5 units ($21,625.00) ETH: 10.0 units ($25,400.00) Total Value: $47,025.00 Asset Analysis: BTC: +5.2% (7d) | Patterns: 3 | Trend: Bullish ETH: +3.8% (7d) | Patterns: 2 | Trend: Bullish Portfolio Health: Good Diversification Score: 75/100 Risk Level: Moderate Major Cryptocurrencies:
- BTC, ETH, USDT, BNB, SOL, XRP, USDC, ADA, AVAX, DOGE
Altcoins:
- TRX, DOT, MATIC, LINK, TON, SHIB, LTC, BCH, UNI, ATOM
DeFi & Emerging:
- XLM, XMR, ETC, HBAR, FIL, APT, ARB, VET, NEAR, ALGO
And many more...
Technology:
- AAPL, TSLA, GOOGL, GOOG, MSFT, NVDA, AMZN, META, NFLX, AMD
Finance:
- JPM, BAC, WFC, GS, MS, C, BLK, SCHW, AXP, USB, V, MA
Consumer:
- WMT, HD, MCD, NKE, SBUX, TGT, COST, LOW, DIS, CMCSA
Healthcare:
- JNJ, UNH, PFE, ABBV, TMO, MRK, ABT, DHR, LLY, BMY
Energy & Industrial:
- XOM, CVX, COP, SLB, BA, CAT, GE, MMM, HON, UPS
ETFs:
- SPY, QQQ, IWM, DIA, VOO, VTI, GLD, SLV
- Head and Shoulders - Regular and inverse variations
- Double Top / Double Bottom - Classic reversal signals
- Triple Top / Triple Bottom - Strong reversal patterns
- Rounding Top / Rounding Bottom - Gradual trend reversals
- V-Top / V-Bottom - Sharp reversal patterns
- Triangles - Ascending, Descending, Symmetrical
- Flags - Bull and Bear flags
- Pennants - Short-term continuation patterns
- Wedges - Rising and Falling wedges
- Rectangles - Consolidation patterns
- Gartley Pattern - 5-point harmonic structure
- Butterfly Pattern - Extended harmonic pattern
- Bat Pattern - Precise harmonic ratios
- Crab Pattern - Extreme harmonic extension
- ABCD Pattern - 4-point harmonic structure
- Single Patterns - Doji, Hammer, Shooting Star, Hanging Man
- Two-Candle Patterns - Engulfing, Harami, Piercing, Dark Cloud
- Three-Candle Patterns - Morning Star, Evening Star, Three White Soldiers, Three Black Crows
- Simple Moving Average (SMA) - Multiple periods
- Exponential Moving Average (EMA) - Weighted averages
- Weighted Moving Average (WMA) - Time-weighted
- MACD - Moving Average Convergence Divergence
- RSI - Relative Strength Index (14-period default)
- Stochastic Oscillator - %K and %D lines
- CCI - Commodity Channel Index
- ROC - Rate of Change
- Williams %R - Momentum indicator
- Bollinger Bands - Standard deviation bands
- ATR - Average True Range
- Standard Deviation - Price volatility measure
- Keltner Channels - Volatility-based channels
- OBV - On-Balance Volume
- VWAP - Volume Weighted Average Price
- A/D Line - Accumulation/Distribution Line
- MFI - Money Flow Index
CryptVault/ ├── cryptvault_cli.py # Main CLI application │ ├── cryptvault/ # Core package │ ├── core/ # Core analysis engine │ │ └── analyzer.py # Main analyzer orchestrator │ ├── patterns/ # Pattern detection │ │ ├── reversal.py # Reversal patterns │ │ ├── continuation.py # Continuation patterns │ │ ├── harmonic.py # Harmonic patterns │ │ ├── candlestick.py # Candlestick patterns │ │ └── geometric.py # Geometric patterns │ ├── indicators/ # Technical indicators │ │ ├── trend.py # Trend indicators │ │ ├── momentum.py # Momentum indicators │ │ ├── volatility.py # Volatility indicators │ │ └── volume.py # Volume indicators │ ├── ml/ # Machine learning │ │ ├── predictor.py # ML prediction interface │ │ ├── models.py # ML model implementations │ │ └── features.py # Feature engineering │ ├── data/ # Data management │ │ ├── fetchers.py # Data fetching │ │ ├── models.py # Data models │ │ └── cache.py # Data caching │ ├── visualization/ # Charting │ │ ├── desktop_charts.py # Interactive charts │ │ ├── pattern_overlay.py # Pattern annotations │ │ └── candlestick_charts.py # Chart generation │ ├── portfolio/ # Portfolio analysis │ │ └── analyzer.py # Portfolio analyzer │ └── cli/ # CLI interface │ ├── commands.py # CLI commands │ └── formatters.py # Output formatting │ ├── tests/ # Test suite │ ├── unit/ # Unit tests │ └── integration/ # Integration tests │ ├── docs/ # Documentation │ ├── QUICK_GUIDE.md # Quick start guide │ ├── API_REFERENCE.md # API documentation │ └── ARCHITECTURE.md # Architecture docs │ ├── examples/ # Example scripts │ └── pattern_overlay_example.py │ ├── config/ # Configuration files │ ├── settings.yaml # Main configuration │ └── logging.yaml # Logging configuration │ ├── README.md # This file ├── LICENSE # MIT License └── requirements.txt # Python dependencies - Python 3.9 or higher
- 4GB RAM
- 2GB disk space
- Internet connection (for data fetching)
- Python 3.11 or higher
- 8GB RAM
- 5GB disk space
- Stable internet connection
- Windows 10/11 - Fully supported
- Ubuntu 20.04+ - Fully supported
- macOS 10.15+ - Fully supported (including M1/M2)
- Detection Speed: <2 seconds for 60 days of data
- Pattern Accuracy: 85%+ confidence threshold
- Supported Patterns: 50+ pattern types
- Real-Time Processing: Yes
- Model Accuracy: 85%+ ensemble accuracy
- Prediction Time: <3 seconds per asset
- Feature Engineering: 40+ technical indicators
- Ensemble Models: 8+ algorithms combined
- Data Fetching: <5 seconds per asset
- Chart Generation: <3 seconds
- Memory Usage: <500MB typical
- CPU Usage: Moderate (multi-threaded)
from cryptvault.core.analyzer import PatternAnalyzer from cryptvault.config import Config # Initialize analyzer config = Config.load('production') analyzer = PatternAnalyzer(config) # Analyze a ticker result = analyzer.analyze_ticker('BTC', days=60, interval='1d') # Access results print(f"Found {len(result.patterns)} patterns") for pattern in result.patterns: print(f" {pattern.pattern_type}: {pattern.confidence:.2%} confidence") # ML predictions if result.ml_predictions: print(f"7-day prediction: ${result.ml_predictions['price_7d']:.2f}")# Analyze multiple assets python cryptvault_cli.py --compare BTC ETH SOL ADA # Portfolio analysis python cryptvault_cli.py --portfolio BTC:1 ETH:20 SOL:100from cryptvault.visualization.desktop_charts import generate_chart from cryptvault.data.fetchers import fetch_data # Fetch data data = fetch_data('BTC', days=60, interval='1d') # Generate chart with patterns generate_chart(data, save_path='btc_analysis.png')# Run all tests pytest tests/ -v # With coverage pytest tests/ -v --cov=cryptvault --cov-report=html # Specific test categories pytest tests/unit/ -v # Unit tests only pytest tests/integration/ -v # Integration tests only # Run with markers pytest tests/ -m "not slow" -v # Skip slow tests- Quick Start Guide - Get started in 5 minutes
- Installation Guide - Detailed installation instructions
- CLI Guide - Command-line interface usage
- Interactive Charts - Chart features and controls
- Stock Support - Stock analysis features
- Troubleshooting - Common issues and solutions
- Architecture Overview - System design and components
- API Reference - Complete API documentation
- Changelog - Version history and updates
- Developer Guide - Development setup and guidelines
- Security Policy - Security best practices
- Privacy Policy - Data handling information
- Contributing Guide - How to contribute to the project
- Code of Conduct - Community guidelines
- Deployment Guide - Production deployment
We welcome contributions! Please see our Contributing Guide for details.
This project is licensed under the MIT License - see the LICENSE file for details.
This project is built on the shoulders of giants:
- MeridianAlgo Team - Core development and algorithmic trading expertise
- scikit-learn Team - Comprehensive machine learning library
- Ran Aroussi (yfinance) - Yahoo Finance data access
- CCXT Team - Cryptocurrency exchange trading library
- NumPy, pandas, SciPy Teams - Scientific computing foundation
- Matplotlib Team - Professional charting and visualization
- XGBoost Team (DMLC) - Extreme gradient boosting
- Microsoft LightGBM Team - Fast gradient boosting framework
For complete credits, see CREDITS.md.
This software is strictly for educational and research purposes only.
-
NOT FINANCIAL ADVICE: This software does not provide financial, investment, or trading advice
-
NOT FOR TRADING: Do not use this software to make actual investment or trading decisions
-
RESEARCH TOOL: This is a machine learning research project to explore prediction algorithms and pattern recognition
-
NO GUARANTEES: Past performance does not guarantee future results
MeridianAlgo is a nonprofit research organization focused on:
-
Machine learning research and development
-
Open-source financial technology tools
-
Educational resources for data science
-
We are NOT a licensed financial advisor, broker, or investment firm
Cryptocurrency and stock trading involves substantial risk of loss:
-
You may lose some or all of your invested capital
-
Market predictions are inherently uncertain and speculative
-
Historical data does not predict future performance
-
External factors can dramatically affect market outcomes
-
Consult a licensed financial advisor before making any investment decisions
This software is appropriate for:
-
Learning about machine learning algorithms
-
Studying technical analysis and market patterns
-
Academic research and coursework
-
Developing and testing prediction models
-
Understanding financial data processing
-
Pattern recognition research
This software is NOT appropriate for:
-
Making actual investment decisions
-
Trading with real money based on predictions
-
Providing financial advice to others
-
Commercial trading operations
For complete disclaimer and terms of use, please see LICENSE and PRIVACY.md.
-
Documentation: docs/ and QUICK_GUIDE.md
-
Issues: GitHub Issues
-
Email: support@meridianalgo.com
Please use the issue tracker and include:
-
Python version
-
Operating system
-
Analysis mode used
-
Error messages
-
Steps to reproduce
Q: Which mode should I use?
A: Quick Analysis for immediate insights, Advanced ML for serious analysis with predictions.
Q: How accurate are the pattern detections?
A: Patterns are detected with confidence scores. Higher confidence (80%+) indicates stronger signals.
Q: Do I need API keys?
A: No, CryptVault uses free data sources by default. API keys are optional for enhanced features.
Q: Can I use my own data?
A: Yes! The Python API supports custom data sources and formats.
Q: How accurate are the ML predictions?
A: Ensemble models achieve 85%+ accuracy. Individual predictions include confidence scores.
Q: Does it work offline?
A: Data fetching requires internet, but analysis and charting work with cached data.
Q: What patterns are detected?
A: 50+ patterns including reversal, continuation, harmonic, and candlestick patterns.
Q: Can I analyze stocks and crypto together?
A: Yes! CryptVault supports both cryptocurrencies and stocks in the same analysis.
Q: How do I save charts?
A: Use --save-chart filename.png to save charts to file instead of displaying.
Q: Is there a web interface?
A: Currently CLI and Python API only. Web interface is planned for future releases.
Version: 4.1.0
Last Updated: December 2024
Maintained by: MeridianAlgo