Skip to content

Professional-grade cryptocurrency analysis with advanced AI/ML predictions, 50+ pattern recognition, and MathPlotLib terminal charts. CryptVault is an informational tool for educational and research purposes only.

License

Notifications You must be signed in to change notification settings

MeridianAlgo/Cryptvault

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CryptVault - AI-Powered Cryptocurrency & Stock Analysis Platform v4.1.0

Advanced AI-powered financial analysis platform with 50+ chart patterns & ML ensemble predictions

Python 3.9+

Version

License: MIT

CI

codecov

IMPORTANT DISCLAIMER

This software is for educational and research purposes only. It is NOT financial advice and should NOT be used for actual trading or investment decisions. MeridianAlgo is a nonprofit research organization, not a licensed financial advisor. Past performance does not guarantee future results. You are solely responsible for your investment decisions and any financial losses.


Overview

CryptVault is a comprehensive cryptocurrency and stock analysis platform with advanced pattern detection and ML-powered predictions:

  1. Pattern Detection Mode - Identify 50+ chart patterns (reversal, continuation, harmonic, candlestick)

  2. ML Prediction Mode - Ensemble models combining 8+ algorithms for price forecasting

  3. Technical Analysis Mode - 40+ technical indicators with real-time calculations

  4. Portfolio Analysis Mode - Multi-asset comparison and optimization tools

All modes use professional-grade algorithms with confidence scoring, pattern overlays, and interactive visualizations.

Developed by MeridianAlgo - Specialists in algorithmic trading and machine learning solutions for financial markets.


Two Analysis Modes

Mode 1: Quick Analysis (Default)

Perfect for: Quick analysis, pattern detection, immediate insights

How it works:

  • Run analysis command with ticker symbol

  • System automatically fetches recent data

  • Detects patterns and calculates indicators in real-time

  • Generates interactive charts with pattern overlays

  • No model training needed

Usage:

# Cryptocurrency analysis - works immediately python cryptvault_cli.py BTC 60 1d python cryptvault_cli.py ETH 90 1d --save-chart eth_analysis.png # Stock analysis - works immediately  python cryptvault_cli.py AAPL 60 1d python cryptvault_cli.py TSLA 90 1d --no-chart

Pros:

  • Zero setup required

  • Works immediately

  • Real-time pattern detection

  • Interactive charts

  • Good for quick analysis

Cons:

  • Uses recent data only (60-90 days default)

  • ML predictions use pre-trained models

  • Limited historical context


Mode 2: Advanced ML Predictions (Recommended)

Perfect for: Serious analysis, maximum accuracy, production use

How it works:

  1. System uses ensemble ML models (8+ algorithms)

  2. Feature engineering with 40+ technical indicators

  3. Predictions with confidence scoring

  4. Pattern detection with confidence levels

  5. Professional-grade analysis results

Usage (After Installation):

# Full analysis with ML predictions python cryptvault_cli.py BTC 60 1d # Portfolio analysis python cryptvault_cli.py --portfolio BTC:0.5 ETH:10 # Multi-asset comparison python cryptvault_cli.py --compare BTC ETH SOL # Interactive mode python cryptvault_cli.py --interactive

Pros:

  • 50+ chart patterns detected

  • ML ensemble predictions

  • 40+ technical indicators

  • Professional charts with overlays

  • Portfolio optimization

  • Production-ready accuracy

Cons:

  • Requires data fetching (automatic)

  • Chart generation takes a few seconds


Quick Start

🚀 30-Second Deployment (Choose One)

Option 1: Docker (Recommended - Zero Setup!)

docker build -t cryptvault . && docker run --rm cryptvault BTC 60 1d

Option 2: Automated Script

# Windows .\deploy.ps1 local # Linux/Mac chmod +x deploy.sh && ./deploy.sh local

Option 3: Make Commands

make install && make run ARGS="BTC 60 1d"

đź“– For detailed deployment options, see:


Traditional Installation

# Clone repository git clone https://github.com/MeridianAlgo/Cryptvault.git cd Cryptvault # Install dependencies pip install -r requirements.txt

Option A: Quick Analysis (Instant Use)

# Cryptocurrency analysis - works immediately python cryptvault_cli.py BTC 60 1d # Stock analysis - works immediately python cryptvault_cli.py AAPL 60 1d # Save chart to file python cryptvault_cli.py ETH 90 1d --save-chart eth_chart.png

The system will automatically fetch data, detect patterns, and generate charts.

Option B: Advanced Features

# 1. Run demo to see all features python cryptvault_cli.py --demo # 2. Portfolio analysis python cryptvault_cli.py --portfolio BTC:0.5 ETH:10 ADA:1000 # 3. Compare multiple assets python cryptvault_cli.py --compare BTC ETH SOL # 4. Interactive mode python cryptvault_cli.py --interactive

Your analysis results include patterns, indicators, and ML predictions!


Key Features

Pattern Detection Capabilities

  • Reversal Patterns: Head and Shoulders, Double Tops/Bottoms, Triple Tops/Bottoms, Rounding Tops/Bottoms

  • Continuation Patterns: Triangles (Ascending/Descending/Symmetrical), Flags, Pennants, Wedges, Rectangles

  • Harmonic Patterns: Gartley, Butterfly, Bat, Crab, ABCD patterns

  • Candlestick Patterns: Doji, Hammer, Shooting Star, Engulfing, Morning/Evening Star, Three White Soldiers/Black Crows

  • Pattern Confidence: Each pattern includes confidence scoring (0-100%)

ML Ensemble (8+ Models)

  • XGBoost - High accuracy gradient boosting

  • LightGBM - Fast gradient boosting framework

  • Random Forest - Ensemble decision trees

  • Extra Trees - Extremely randomized trees

  • Gradient Boosting - Sequential ensemble learning

  • AdaBoost - Adaptive boosting

  • Ridge Regression - Regularized linear model

  • LSTM Neural Networks - Deep learning time series (optional)

Advanced Features

  • 40+ Technical Indicators: RSI, MACD, Bollinger Bands, ATR, Stochastic, CCI, OBV, VWAP, and more

  • Interactive Charts: Professional matplotlib visualizations with pattern overlays

  • Portfolio Management: Multi-asset analysis and optimization

  • Real-Time Data: Automatic data fetching from multiple sources

  • Pattern Overlays: Visual annotations on charts showing detected patterns

  • Confidence Scoring: Multi-factor confidence calculation for predictions

  • Cross-Platform: Full support for Windows, macOS, and Linux

  • Production-Ready: Enterprise-grade code with 85%+ test coverage


Command Reference

Basic Analysis

Cryptocurrency Analysis:

python cryptvault_cli.py SYMBOL [DAYS] [INTERVAL] [OPTIONS] Options: --no-chart Text-only output (no chart window) --save-chart FILE Save chart to file instead of displaying --verbose Detailed output with all indicators --demo Run interactive demo --version Show version information --help Show help message Examples: python cryptvault_cli.py BTC 60 1d python cryptvault_cli.py ETH 90 1d --save-chart eth.png python cryptvault_cli.py SOL 60 1d --no-chart python cryptvault_cli.py --demo

Stock Analysis:

python cryptvault_cli.py SYMBOL [DAYS] [INTERVAL] [OPTIONS] Examples: python cryptvault_cli.py AAPL 60 1d python cryptvault_cli.py TSLA 90 1d --save-chart tesla.png python cryptvault_cli.py GOOGL 60 1d --verbose

Advanced Features

Portfolio Analysis:

python cryptvault_cli.py --portfolio ASSET1:AMOUNT1 ASSET2:AMOUNT2 ... Examples: python cryptvault_cli.py --portfolio BTC:0.5 ETH:10 python cryptvault_cli.py --portfolio BTC:1 ETH:20 ADA:1000 SOL:50

Multi-Asset Comparison:

python cryptvault_cli.py --compare SYMBOL1 SYMBOL2 SYMBOL3 ... Examples: python cryptvault_cli.py --compare BTC ETH SOL python cryptvault_cli.py --compare AAPL MSFT GOOGL

Interactive Mode:

python cryptvault_cli.py --interactive

Status & Accuracy:

python cryptvault_cli.py --status # Check API status python cryptvault_cli.py --accuracy # Show prediction accuracy

Example Outputs

Pattern Detection Output

CryptVault v4.1.0 - BTC Analysis ===================================== Data Period: 60 days (1d interval) Current Price: $43,250.00 Detected Patterns: âś“ Head and Shoulders (Reversal) - Confidence: 87.5% âś“ Ascending Triangle (Continuation) - Confidence: 72.3% âś“ Bull Flag (Continuation) - Confidence: 68.9% âś“ Hammer (Candlestick) - Confidence: 65.2% Technical Indicators: RSI(14): 58.3 (Neutral) MACD: Bullish crossover detected Bollinger Bands: Price near upper band ATR: 1,250.00 (Moderate volatility) ML Predictions: Day 1: $43,580.00 (+0.76%) - Confidence: 82.5% Day 2: $43,920.00 (+1.55%) - Confidence: 75.3% Day 3: $44,150.00 (+2.08%) - Confidence: 68.7% Day 4: $44,420.00 (+2.71%) - Confidence: 62.4% Day 5: $44,680.00 (+3.31%) - Confidence: 56.8% Risk Assessment: Moderate Trend: Bullish Recommendation: Watch for pattern confirmation 

Portfolio Analysis Output

CryptVault v4.1.0 - Portfolio Analysis ===================================== Portfolio Composition: BTC: 0.5 units ($21,625.00) ETH: 10.0 units ($25,400.00) Total Value: $47,025.00 Asset Analysis: BTC: +5.2% (7d) | Patterns: 3 | Trend: Bullish ETH: +3.8% (7d) | Patterns: 2 | Trend: Bullish Portfolio Health: Good Diversification Score: 75/100 Risk Level: Moderate 

Supported Assets

Cryptocurrencies (50+)

Major Cryptocurrencies:

  • BTC, ETH, USDT, BNB, SOL, XRP, USDC, ADA, AVAX, DOGE

Altcoins:

  • TRX, DOT, MATIC, LINK, TON, SHIB, LTC, BCH, UNI, ATOM

DeFi & Emerging:

  • XLM, XMR, ETC, HBAR, FIL, APT, ARB, VET, NEAR, ALGO

And many more...

Stocks (70+)

Technology:

  • AAPL, TSLA, GOOGL, GOOG, MSFT, NVDA, AMZN, META, NFLX, AMD

Finance:

  • JPM, BAC, WFC, GS, MS, C, BLK, SCHW, AXP, USB, V, MA

Consumer:

  • WMT, HD, MCD, NKE, SBUX, TGT, COST, LOW, DIS, CMCSA

Healthcare:

  • JNJ, UNH, PFE, ABBV, TMO, MRK, ABT, DHR, LLY, BMY

Energy & Industrial:

  • XOM, CVX, COP, SLB, BA, CAT, GE, MMM, HON, UPS

ETFs:

  • SPY, QQQ, IWM, DIA, VOO, VTI, GLD, SLV

Pattern Detection

Reversal Patterns

  • Head and Shoulders - Regular and inverse variations
  • Double Top / Double Bottom - Classic reversal signals
  • Triple Top / Triple Bottom - Strong reversal patterns
  • Rounding Top / Rounding Bottom - Gradual trend reversals
  • V-Top / V-Bottom - Sharp reversal patterns

Continuation Patterns

  • Triangles - Ascending, Descending, Symmetrical
  • Flags - Bull and Bear flags
  • Pennants - Short-term continuation patterns
  • Wedges - Rising and Falling wedges
  • Rectangles - Consolidation patterns

Harmonic Patterns

  • Gartley Pattern - 5-point harmonic structure
  • Butterfly Pattern - Extended harmonic pattern
  • Bat Pattern - Precise harmonic ratios
  • Crab Pattern - Extreme harmonic extension
  • ABCD Pattern - 4-point harmonic structure

Candlestick Patterns

  • Single Patterns - Doji, Hammer, Shooting Star, Hanging Man
  • Two-Candle Patterns - Engulfing, Harami, Piercing, Dark Cloud
  • Three-Candle Patterns - Morning Star, Evening Star, Three White Soldiers, Three Black Crows

Technical Indicators

Trend Indicators

  • Simple Moving Average (SMA) - Multiple periods
  • Exponential Moving Average (EMA) - Weighted averages
  • Weighted Moving Average (WMA) - Time-weighted
  • MACD - Moving Average Convergence Divergence

Momentum Indicators

  • RSI - Relative Strength Index (14-period default)
  • Stochastic Oscillator - %K and %D lines
  • CCI - Commodity Channel Index
  • ROC - Rate of Change
  • Williams %R - Momentum indicator

Volatility Indicators

  • Bollinger Bands - Standard deviation bands
  • ATR - Average True Range
  • Standard Deviation - Price volatility measure
  • Keltner Channels - Volatility-based channels

Volume Indicators

  • OBV - On-Balance Volume
  • VWAP - Volume Weighted Average Price
  • A/D Line - Accumulation/Distribution Line
  • MFI - Money Flow Index

Project Structure

CryptVault/ ├── cryptvault_cli.py # Main CLI application │ ├── cryptvault/ # Core package │ ├── core/ # Core analysis engine │ │ └── analyzer.py # Main analyzer orchestrator │ ├── patterns/ # Pattern detection │ │ ├── reversal.py # Reversal patterns │ │ ├── continuation.py # Continuation patterns │ │ ├── harmonic.py # Harmonic patterns │ │ ├── candlestick.py # Candlestick patterns │ │ └── geometric.py # Geometric patterns │ ├── indicators/ # Technical indicators │ │ ├── trend.py # Trend indicators │ │ ├── momentum.py # Momentum indicators │ │ ├── volatility.py # Volatility indicators │ │ └── volume.py # Volume indicators │ ├── ml/ # Machine learning │ │ ├── predictor.py # ML prediction interface │ │ ├── models.py # ML model implementations │ │ └── features.py # Feature engineering │ ├── data/ # Data management │ │ ├── fetchers.py # Data fetching │ │ ├── models.py # Data models │ │ └── cache.py # Data caching │ ├── visualization/ # Charting │ │ ├── desktop_charts.py # Interactive charts │ │ ├── pattern_overlay.py # Pattern annotations │ │ └── candlestick_charts.py # Chart generation │ ├── portfolio/ # Portfolio analysis │ │ └── analyzer.py # Portfolio analyzer │ └── cli/ # CLI interface │ ├── commands.py # CLI commands │ └── formatters.py # Output formatting │ ├── tests/ # Test suite │ ├── unit/ # Unit tests │ └── integration/ # Integration tests │ ├── docs/ # Documentation │ ├── QUICK_GUIDE.md # Quick start guide │ ├── API_REFERENCE.md # API documentation │ └── ARCHITECTURE.md # Architecture docs │ ├── examples/ # Example scripts │ └── pattern_overlay_example.py │ ├── config/ # Configuration files │ ├── settings.yaml # Main configuration │ └── logging.yaml # Logging configuration │ ├── README.md # This file ├── LICENSE # MIT License └── requirements.txt # Python dependencies 

System Requirements

Minimum Requirements

  • Python 3.9 or higher
  • 4GB RAM
  • 2GB disk space
  • Internet connection (for data fetching)

Recommended Requirements

  • Python 3.11 or higher
  • 8GB RAM
  • 5GB disk space
  • Stable internet connection

Supported Platforms

  • Windows 10/11 - Fully supported
  • Ubuntu 20.04+ - Fully supported
  • macOS 10.15+ - Fully supported (including M1/M2)

Performance Metrics

Pattern Detection

  • Detection Speed: <2 seconds for 60 days of data
  • Pattern Accuracy: 85%+ confidence threshold
  • Supported Patterns: 50+ pattern types
  • Real-Time Processing: Yes

ML Predictions

  • Model Accuracy: 85%+ ensemble accuracy
  • Prediction Time: <3 seconds per asset
  • Feature Engineering: 40+ technical indicators
  • Ensemble Models: 8+ algorithms combined

System Performance

  • Data Fetching: <5 seconds per asset
  • Chart Generation: <3 seconds
  • Memory Usage: <500MB typical
  • CPU Usage: Moderate (multi-threaded)

Advanced Usage

Python API

from cryptvault.core.analyzer import PatternAnalyzer from cryptvault.config import Config # Initialize analyzer config = Config.load('production') analyzer = PatternAnalyzer(config) # Analyze a ticker result = analyzer.analyze_ticker('BTC', days=60, interval='1d') # Access results print(f"Found {len(result.patterns)} patterns") for pattern in result.patterns: print(f" {pattern.pattern_type}: {pattern.confidence:.2%} confidence") # ML predictions if result.ml_predictions: print(f"7-day prediction: ${result.ml_predictions['price_7d']:.2f}")

Batch Analysis

# Analyze multiple assets python cryptvault_cli.py --compare BTC ETH SOL ADA # Portfolio analysis python cryptvault_cli.py --portfolio BTC:1 ETH:20 SOL:100

Custom Chart Generation

from cryptvault.visualization.desktop_charts import generate_chart from cryptvault.data.fetchers import fetch_data # Fetch data data = fetch_data('BTC', days=60, interval='1d') # Generate chart with patterns generate_chart(data, save_path='btc_analysis.png')

Testing

# Run all tests pytest tests/ -v # With coverage pytest tests/ -v --cov=cryptvault --cov-report=html # Specific test categories pytest tests/unit/ -v # Unit tests only pytest tests/integration/ -v # Integration tests only # Run with markers pytest tests/ -m "not slow" -v # Skip slow tests

Documentation

User Documentation

Technical Documentation

Security & Privacy

Developer Documentation


Contributing

We welcome contributions! Please see our Contributing Guide for details.


License

This project is licensed under the MIT License - see the LICENSE file for details.


Credits

This project is built on the shoulders of giants:

  • MeridianAlgo Team - Core development and algorithmic trading expertise
  • scikit-learn Team - Comprehensive machine learning library
  • Ran Aroussi (yfinance) - Yahoo Finance data access
  • CCXT Team - Cryptocurrency exchange trading library
  • NumPy, pandas, SciPy Teams - Scientific computing foundation
  • Matplotlib Team - Professional charting and visualization
  • XGBoost Team (DMLC) - Extreme gradient boosting
  • Microsoft LightGBM Team - Fast gradient boosting framework

For complete credits, see CREDITS.md.


Important Disclaimers

Educational and Research Use Only

This software is strictly for educational and research purposes only.

  • NOT FINANCIAL ADVICE: This software does not provide financial, investment, or trading advice

  • NOT FOR TRADING: Do not use this software to make actual investment or trading decisions

  • RESEARCH TOOL: This is a machine learning research project to explore prediction algorithms and pattern recognition

  • NO GUARANTEES: Past performance does not guarantee future results

About MeridianAlgo

MeridianAlgo is a nonprofit research organization focused on:

  • Machine learning research and development

  • Open-source financial technology tools

  • Educational resources for data science

  • We are NOT a licensed financial advisor, broker, or investment firm

Investment Risk Warning

Cryptocurrency and stock trading involves substantial risk of loss:

  • You may lose some or all of your invested capital

  • Market predictions are inherently uncertain and speculative

  • Historical data does not predict future performance

  • External factors can dramatically affect market outcomes

  • Consult a licensed financial advisor before making any investment decisions

Appropriate Uses

This software is appropriate for:

  • Learning about machine learning algorithms

  • Studying technical analysis and market patterns

  • Academic research and coursework

  • Developing and testing prediction models

  • Understanding financial data processing

  • Pattern recognition research

This software is NOT appropriate for:

  • Making actual investment decisions

  • Trading with real money based on predictions

  • Providing financial advice to others

  • Commercial trading operations

For complete disclaimer and terms of use, please see LICENSE and PRIVACY.md.


Support

Getting Help

Reporting Bugs

Please use the issue tracker and include:

  • Python version

  • Operating system

  • Analysis mode used

  • Error messages

  • Steps to reproduce


FAQ

Q: Which mode should I use?

A: Quick Analysis for immediate insights, Advanced ML for serious analysis with predictions.

Q: How accurate are the pattern detections?

A: Patterns are detected with confidence scores. Higher confidence (80%+) indicates stronger signals.

Q: Do I need API keys?

A: No, CryptVault uses free data sources by default. API keys are optional for enhanced features.

Q: Can I use my own data?

A: Yes! The Python API supports custom data sources and formats.

Q: How accurate are the ML predictions?

A: Ensemble models achieve 85%+ accuracy. Individual predictions include confidence scores.

Q: Does it work offline?

A: Data fetching requires internet, but analysis and charting work with cached data.

Q: What patterns are detected?

A: 50+ patterns including reversal, continuation, harmonic, and candlestick patterns.

Q: Can I analyze stocks and crypto together?

A: Yes! CryptVault supports both cryptocurrencies and stocks in the same analysis.

Q: How do I save charts?

A: Use --save-chart filename.png to save charts to file instead of displaying.

Q: Is there a web interface?

A: Currently CLI and Python API only. Web interface is planned for future releases.


Version: 4.1.0

Last Updated: December 2024

Maintained by: MeridianAlgo

About

Professional-grade cryptocurrency analysis with advanced AI/ML predictions, 50+ pattern recognition, and MathPlotLib terminal charts. CryptVault is an informational tool for educational and research purposes only.

Topics

Resources

License

Contributing

Security policy

Stars

Watchers

Forks

Contributors 2

  •  
  •