Real-time object tracking platform using SiamRPN (Siamese Region Proposal Network) for computer vision applications.
VisioTrack is a full-stack application that enables users to track objects in videos using deep learning. The system consists of:
- Frontend - Next.js web interface for video upload and visualization
- Backend - Python API with SiamRPN tracking model
VisioTrack/ ├── model/ # Python backend (API + ML model) │ ├── app.py # FastAPI server (HF Spaces) │ ├── colab_api.py # Flask server (Colab) │ ├── siamrpn.py # SiamRPN tracker │ ├── model.pth # Pre-trained weights │ ├── Dockerfile # Container config │ └── README.md # Backend documentation │ └── website/ # Next.js frontend ├── app/ # Pages and components ├── public/ # Static assets └── README.md # Frontend documentation - View pre-labeled training videos
- Analyze frame-by-frame annotations
- Understand tracking behavior
- Upload custom videos
- Draw bounding boxes on first frame
- Submit to backend for GPU processing
- Download tracked results
- Real-time object tracking
- GPU acceleration support
- Browser-compatible video encoding
- Interactive web interface
- REST API integration
- Next.js 16 (React 19)
- TypeScript
- Tailwind CSS v4
- Framer Motion
- Python 3.10+
- PyTorch
- FastAPI / Flask
- OpenCV
- FFmpeg
- Vercel (Frontend)
- Hugging Face Spaces (Backend)
- Google Colab (Backend - Free GPU)
- Frontend Setup: website/README.md
- Backend Setup: model/README.md
- API Reference: Available at
/docsendpoint (FastAPI)
- Fork the repository
- Create feature branch (
git checkout -b feature/amazing-feature) - Commit changes (
git commit -m 'Add amazing feature') - Push to branch (
git push origin feature/amazing-feature) - Open Pull Request
- SiamRPN algorithm and pre-trained model
- GOT-10k dataset
- Hugging Face Spaces platform
- Google Colab for free GPU access
© 2025 BV Tech Team. All rights reserved.