Please provide complete information as applicable to your setup.
• Hardware Platform (Jetson / GPU) 1080 Ti
• DeepStream Version 5.0
• JetPack Version (valid for Jetson only)
• TensorRT Version 7.0.0.1
• NVIDIA GPU Driver Version (valid for GPU only) 450.80.02
• Issue Type( questions, new requirements, bugs) bugs/question
• How to reproduce the issue ? (This is for bugs. Including which sample app is using, the configuration files content, the command line used and other details for reproducing)
• Requirement details( This is for new requirement. Including the module name-for which plugin or for which sample application, the function description)
Hello, I’m train the model using TLT - ResNet18 simple classifier. It works perfect with tlt-infer or with clear TensorRT app. But when I try to use it inside DS pipeline as secondary model it doesn’t work.
I’ve use the following config and preprocessing parameters as described there.
[property] gpu-id=0 net-scale-factor=1.0 offsets=123.67;116.28;103.53 model-color-format=1 infer-dims=3;224;224 uff-input-order=0 uff-input-blob-name=input_1 batch-size=1 model-engine-file=resnet18_version2_classifier_bs_1_res_224_fp32.engine labelfile-path=labels.txt #force-implicit-batch-dim=1 output-blob-names=predictions/Softmax ## 0=FP32, 1=INT8, 2=FP16 mode network-mode=0 process-mode=2 network-type=1 #classifier-async-mode=0 classifier-threshold=0.0 #input-object-min-width=64 #input-object-min-height=64 operate-on-gie-id=1 operate-on-class-ids=0;1; gie-unique-id=4 output-tensor-meta=1 I can’t get proper predictions inside deepstream app. I get rare predictions and class_id=0. I add tensor-meta to see predictions, and predictions/Softmax layer even not listed in probe.
I try default sgie1 model config_infer_secondary_vehicletypes.txt and get all detections and see predictions/Softmax in probe:
[property] gpu-id=0 net-scale-factor=1 model-file=/opt/nvidia/deepstream/deepstream/samples/models/Secondary_VehicleTypes/resnet18.caffemodel proto-file=/opt/nvidia/deepstream/deepstream/samples/models/Secondary_VehicleTypes/resnet18.prototxt #model-engine-file=/opt/nvidia/deepstream/deepstream-5.0/samples/models/Secondary_VehicleTypes/resnet18.caffemodel_b1_gpu0_fp16.engine #int8-calib-file=/opt/nvidia/deepstream/deepstream/samples/models/Secondary_VehicleTypes/cal_trt.bin #mean-file=/opt/nvidia/deepstream/deepstream/samples/models/Secondary_VehicleTypes/mean.ppm labelfile-path=/opt/nvidia/deepstream/deepstream/samples/models/Secondary_VehicleTypes/labels.txt force-implicit-batch-dim=1 batch-size=1 model-color-format=1 ## 0=FP32, 1=INT8, 2=FP16 mode network-mode=2 network-type=1 output-blob-names=predictions/Softmax classifier-async-mode=0 classifier-threshold=0.01 input-object-min-width=128 input-object-min-height=128 operate-on-gie-id=1 operate-on-class-ids=0;1; gie-unique-id=4 output-tensor-meta=1 is-classifier=1 #scaling-filter=0 #scaling-compute-hw=0 I’ve tried the same configurations for my model and don’t get any result also:
[property] gpu-id=0 net-scale-factor=1 model-color-format=0 infer-dims=3;224;224 uff-input-order=0 uff-input-blob-name=input_1 batch-size=1 #onnx-file=/home/rostislav/trt_converter/res18_simple.onnx #model-engine-file=/home/rostislav/onnx_trt_converter/export/resnet18_bs-1_res-(224, 224).engine #model-engine-file=/home/rostislav/trt_converter/resnet18_engine_classifier.buf model-engine-file=/home/rostislav/tlt_data/resnet18_version2_classifier_bs_1_res_224_fp32.engine labelfile-path=labels_grocery.txt force-implicit-batch-dim=1 output-blob-names=predictions/Softmax ## 0=FP32, 1=INT8, 2=FP16 mode network-mode=0 process-mode=2 network-type=1 #classifier-async-mode=0 classifier-threshold=0.0 #input-object-min-width=64 #input-object-min-height=64 operate-on-gie-id=1 operate-on-class-ids=0;1; gie-unique-id=4 output-tensor-meta=1 Could somebody explain me how to correctly setup sgie classification model for deepstream pipeline and which preprocessing parameters should I use for TLT model inside DS?