Hi Aerial Robotics Guru,
1. Requirements for building tensorflow:
- numpy of pip package.
- mock of pip package.
- Java 8 is required for bazel. (Not required for TF execution)
- bazel is required. (Not required for TF execution)
In addition, patches may be applied to the source code.
https://github.com/naisy/JetsonXavier/blob/JetPack4.0_python3.6/JetPack4.0/python3.6/scripts/build_tensorflow.sh
2. Training MNIST data using LeNet model in Keras:
It seemed that there was no problem as far as I tried.
# remove naisy build tensorflow pip3 uninstall tensorflow # install official tensorflow pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp40 tensorflow-gpu # install keras-2.2.0 pip3 install --upgrade keras==2.2.0
- Source code (mnist_lenet.py)
# https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py '''Trains a simple convnet on the MNIST dataset. Gets to 99.25% test accuracy after 12 epochs (there is still a lot of margin for parameter tuning). 16 seconds per epoch on a GRID K520 GPU. ''' from __future__ import print_function import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D from keras import backend as K batch_size = 128 num_classes = 10 epochs = 12 # input image dimensions img_rows, img_cols = 28, 28 def LeNet(input_shape, num_classes): model = Sequential() model.add(Conv2D(20, kernel_size=5, strides=1, activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(2, strides=2)) model.add(Conv2D(50, kernel_size=5, strides=1, activation='relu')) model.add(MaxPooling2D(2, strides=2)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(500, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.SGD(), metrics=['accuracy']) return model def default_cnn(input_shape, num_classes): model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) return model # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) #model = default_cnn(input_shape, num_classes) model = LeNet(input_shape, num_classes) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1])
python mnist_lenet.py
Using TensorFlow backend. x_train shape: (60000, 28, 28, 1) 60000 train samples 10000 test samples Train on 60000 samples, validate on 10000 samples Epoch 1/12 2018-10-03 05:34:14.234838: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:857] ARM64 does not support NUMA - returning NUMA node zero 2018-10-03 05:34:14.235162: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0 with properties: name: Xavier major: 7 minor: 2 memoryClockRate(GHz): 1.5 pciBusID: 0000:00:00.0 totalMemory: 15.46GiB freeMemory: 9.55GiB 2018-10-03 05:34:14.235332: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible gpu devices: 0 2018-10-03 05:34:15.064031: I tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device interconnect StreamExecutor with strength 1 edge matrix: 2018-10-03 05:34:15.064223: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0 2018-10-03 05:34:15.064312: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0: N 2018-10-03 05:34:15.064639: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 9066 MB memory) -> physical GPU (device: 0, name: Xavier, pci bus id: 0000:00:00.0, compute capability: 7.2) 60000/60000 [==============================] - 12s 196us/step - loss: 1.4815 - acc: 0.5106 - val_loss: 0.3588 - val_acc: 0.9084 Epoch 2/12 60000/60000 [==============================] - 6s 92us/step - loss: 0.4331 - acc: 0.8666 - val_loss: 0.2002 - val_acc: 0.9450 Epoch 3/12 60000/60000 [==============================] - 5s 91us/step - loss: 0.2958 - acc: 0.9104 - val_loss: 0.1520 - val_acc: 0.9561 Epoch 4/12 60000/60000 [==============================] - 5s 91us/step - loss: 0.2391 - acc: 0.9277 - val_loss: 0.1248 - val_acc: 0.9622 Epoch 5/12 60000/60000 [==============================] - 5s 90us/step - loss: 0.2048 - acc: 0.9381 - val_loss: 0.1072 - val_acc: 0.9676 Epoch 6/12 60000/60000 [==============================] - 5s 90us/step - loss: 0.1834 - acc: 0.9453 - val_loss: 0.0963 - val_acc: 0.9724 Epoch 7/12 60000/60000 [==============================] - 5s 89us/step - loss: 0.1656 - acc: 0.9501 - val_loss: 0.0864 - val_acc: 0.9737 Epoch 8/12 60000/60000 [==============================] - 5s 89us/step - loss: 0.1541 - acc: 0.9541 - val_loss: 0.0790 - val_acc: 0.9762 Epoch 9/12 60000/60000 [==============================] - 5s 89us/step - loss: 0.1416 - acc: 0.9572 - val_loss: 0.0738 - val_acc: 0.9776 Epoch 10/12 60000/60000 [==============================] - 5s 88us/step - loss: 0.1339 - acc: 0.9593 - val_loss: 0.0683 - val_acc: 0.9786 Epoch 11/12 60000/60000 [==============================] - 5s 88us/step - loss: 0.1255 - acc: 0.9612 - val_loss: 0.0648 - val_acc: 0.9797 Epoch 12/12 60000/60000 [==============================] - 5s 88us/step - loss: 0.1204 - acc: 0.9641 - val_loss: 0.0614 - val_acc: 0.9807 Test loss: 0.06142731437981129 Test accuracy: 0.9807