OSError: libcurand.so.10: cannot open shared object file: No such file or directory

I have just flashed the new JetPack 5.0 on my Jetson AGX Xavier. And I try to follow those instructions NVIDIA L4T PyTorch | NVIDIA NGC to run PyTorch docker container.

I run docker:

sudo docker run -it --rm --runtime nvidia --network host nvcr.io/nvidia/l4t-pytorch:r32.6.1-pth1.9-py3 

And when I run python3 and import torch i get:

>>> import torch Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python3.6/dist-packages/torch/__init__.py", line 195, in <module> _load_global_deps() File "/usr/local/lib/python3.6/dist-packages/torch/__init__.py", line 148, in _load_global_deps ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL) File "/usr/lib/python3.6/ctypes/__init__.py", line 348, in __init__ self._handle = _dlopen(self._name, mode) OSError: libcurand.so.10: cannot open shared object file: No such file or directory 

my nvidia-jetpack specification:

Package: nvidia-jetpack Version: 5.0.1-b118 Architecture: arm64 Maintainer: NVIDIA Corporation Installed-Size: 194 Depends: nvidia-cuda (= 5.0.1-b118), nvidia-opencv (= 5.0.1-b118), nvidia-cudnn8 (= 5.0.1-b118), nvidia-tensorrt (= 5.0.1-b118), nvidia-container (= 5.0.1-b118), nvidia-vpi (= 5.0.1-b118), nvidia-nsight-sys (= 5.0.1-b118), nvidia-l4t-jetson-multimedia-api (>> 34.1-0), nvidia-l4t-jetson-multimedia-api (<< 34.2-0) Homepage: http://developer.nvidia.com/jetson Priority: standard Section: metapackages Filename: pool/main/n/nvidia-jetpack/nvidia-jetpack_5.0.1-b118_arm64.deb Size: 29376 SHA256: d7ff0e4a95cc11c7a5d0b9e347923e8233ab544431d5db49d18c24944902e7a2 SHA1: fcab6ba9d6dca4a8b3e758d6fb1584baed34f7ed MD5sum: f168d009bf5e3ee36ab14e646ad4b7dc Description: NVIDIA Jetpack Meta Package Description-md5: ad1462289bdbc54909ae109d1d32c0a8 Package: nvidia-jetpack Version: 5.0-b114 Architecture: arm64 Maintainer: NVIDIA Corporation Installed-Size: 194 Depends: nvidia-cuda (= 5.0-b114), nvidia-opencv (= 5.0-b114), nvidia-cudnn8 (= 5.0-b114), nvidia-tensorrt (= 5.0-b114), nvidia-container (= 5.0-b114), nvidia-vpi (= 5.0-b114), nvidia-nsight-sys (= 5.0-b114), nvidia-l4t-jetson-multimedia-api (>> 34.1-0), nvidia-l4t-jetson-multimedia-api (<< 34.2-0) Homepage: http://developer.nvidia.com/jetson Priority: standard Section: metapackages Filename: pool/main/n/nvidia-jetpack/nvidia-jetpack_5.0-b114_arm64.deb Size: 29370 SHA256: 3b5c14e3ed53cd2517d1a318d056aad3d8b44ff660a489a9b62825d518cf7c5b SHA1: 608d1f78791a2bdda8bf88443796dfe99f19b199 MD5sum: dbcb9ff116c50b66d5270acd95e05f9a Description: NVIDIA Jetpack Meta Package Description-md5: ad1462289bdbc54909ae109d1d32c0a8 

additional information

/usr/local/cuda/lib64/ inside docker only contain:

libcudadevrt.a libcudart_static.a stubs 

/usr/local/cuda/lib64/ on host contain a lot more files

nefault runtime is set to nvidia

ubuntu@ubuntu:~$ docker info Client: Context: default Debug Mode: false Server: Containers: 0 Running: 0 Paused: 0 Stopped: 0 Images: 53 Server Version: 20.10.12 Storage Driver: overlay2 Backing Filesystem: extfs Supports d_type: true Native Overlay Diff: true userxattr: false Logging Driver: json-file Cgroup Driver: cgroupfs Cgroup Version: 1 Plugins: Volume: local Network: bridge host ipvlan macvlan null overlay Log: awslogs fluentd gcplogs gelf journald json-file local logentries splunk syslog Swarm: inactive Runtimes: io.containerd.runc.v2 io.containerd.runtime.v1.linux nvidia runc Default Runtime: nvidia Init Binary: docker-init containerd version: runc version: 7cfd3bd init version: Security Options: seccomp Profile: default Kernel Version: 5.10.65-tegra Operating System: Ubuntu 20.04.4 LTS OSType: linux Architecture: aarch64 CPUs: 4 Total Memory: 14.56GiB Name: ubuntu ID: TSUV:CCRX:H2ZP:OR7L:E4SU:KG5S:RTJS:63BA:6UJB:DPKB:7EMK:CBV6 Docker Root Dir: /mnt/docker Debug Mode: false Registry: https://index.docker.io/v1/ Labels: Experimental: false Insecure Registries: 127.0.0.0/8 Live Restore Enabled: false 

Hi @uzytkownik786, that r32.6.1 container image was built for JetPack 4.6 (L4T R32.6.1). Since you are running JetPack 5.0.1, please use one of these tags instead:

docker pull nvcr.io/nvidia/l4t-pytorch:r34.1.1-pth1.12-py3 docker pull nvcr.io/nvidia/l4t-pytorch:r34.1.1-pth1.11-py3 

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.