Object Detection using TAO DetectNet_v2. The category accuracy results are missing

Please provide the following information when requesting support.

• Hardware (T4/V100/Xavier/Nano/etc) T4
• Network Type (Detectnet_v2/Faster_rcnn/Yolo_v4/LPRnet/Mask_rcnn/Classification/etc) Detectnet_v2
• TLT Version (Please run “tlt info --verbose” and share “docker_tag” here)
• Training spec file(If have, please share here)detectnet_v2.ipynb
• How to reproduce the issue ? (This is for errors. Please share the command line and the detailed log here.)
When I used the detectnet_v2 algorithm to train my kitti format data set, I replaced the pretrained_resnet18 model with the dashcamnet model. My own data set categories are pedestrian and car. The following results appeared during training. There is only the accuracy of the pedestrian category, and the accuracy results of the other two categories are missing.

 class name average precision (in %) ------------ -------------------------- car 0 cyclist 0 pedestrian 12.7891 

Here are the detailed results.Please help me.

 /usr/local/lib/python3.6/dist-packages/keras/engine/saving.py:292: UserWarning: No training configuration found in save file: the model was *not* compiled. Compile it manually. warnings.warn('No training configuration found in save file: ' _________________________________________________________ 2021-12-28 07:30:06,779 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Serial augmentation enabled = False 2021-12-28 07:30:06,779 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Pseudo sharding enabled = False 2021-12-28 07:30:06,779 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Max Image Dimensions (all sources): (0, 0) 2021-12-28 07:30:06,779 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: number of cpus: 48, io threads: 96, compute threads: 48, buffered batches: 4 2021-12-28 07:30:06,779 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: total dataset size 114, number of sources: 1, batch size per gpu: 4, steps: 29 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead. 2021-12-28 07:30:06,831 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead. WARNING:tensorflow:Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7f09cbe30fd0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7f09cbe30fd0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code 2021-12-28 07:30:06,893 [WARNING] tensorflow: Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7f09cbe30fd0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7f09cbe30fd0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code 2021-12-28 07:30:06,922 [INFO] iva.detectnet_v2.dataloader.default_dataloader: Bounding box coordinates were detected in the input specification! Bboxes will be automatically converted to polygon coordinates. 2021-12-28 07:30:07,230 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: shuffle: True - shard 0 of 1 2021-12-28 07:30:07,238 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: sampling 1 datasets with weights: 2021-12-28 07:30:07,238 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: source: 0 weight: 1.000000 WARNING:tensorflow:Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f09b02cfc50>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f09b02cfc50>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code 2021-12-28 07:30:07,259 [WARNING] tensorflow: Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f09b02cfc50>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f09b02cfc50>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code 2021-12-28 07:30:07,692 [INFO] __main__: Found 114 samples in training set WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/rasterizers/bbox_rasterizer.py:347: The name tf.bincount is deprecated. Please use tf.math.bincount instead. 2021-12-28 07:30:07,832 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/rasterizers/bbox_rasterizer.py:347: The name tf.bincount is deprecated. Please use tf.math.bincount instead. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/training/training_proto_utilities.py:89: The name tf.train.get_or_create_global_step is deprecated. Please use tf.compat.v1.train.get_or_create_global_step instead. 2021-12-28 07:30:07,981 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/training/training_proto_utilities.py:89: The name tf.train.get_or_create_global_step is deprecated. Please use tf.compat.v1.train.get_or_create_global_step instead. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/training/training_proto_utilities.py:36: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead. 2021-12-28 07:30:08,000 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/training/training_proto_utilities.py:36: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_functions.py:17: The name tf.log is deprecated. Please use tf.math.log instead. 2021-12-28 07:30:08,214 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_functions.py:17: The name tf.log is deprecated. Please use tf.math.log instead. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py:235: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead. 2021-12-28 07:30:08,262 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/cost_function/cost_auto_weight_hook.py:235: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/model/detectnet_model.py:587: The name tf.summary.scalar is deprecated. Please use tf.compat.v1.summary.scalar instead. 2021-12-28 07:30:08,273 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/model/detectnet_model.py:587: The name tf.summary.scalar is deprecated. Please use tf.compat.v1.summary.scalar instead. 2021-12-28 07:30:10,495 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Serial augmentation enabled = False 2021-12-28 07:30:10,495 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Pseudo sharding enabled = False 2021-12-28 07:30:10,495 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Max Image Dimensions (all sources): (0, 0) 2021-12-28 07:30:10,495 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: number of cpus: 48, io threads: 96, compute threads: 48, buffered batches: 4 2021-12-28 07:30:10,495 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: total dataset size 18, number of sources: 1, batch size per gpu: 4, steps: 5 WARNING:tensorflow:Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7f09cbe30828>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7f09cbe30828>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code 2021-12-28 07:30:10,512 [WARNING] tensorflow: Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7f09cbe30828>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7f09cbe30828>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code 2021-12-28 07:30:10,542 [INFO] iva.detectnet_v2.dataloader.default_dataloader: Bounding box coordinates were detected in the input specification! Bboxes will be automatically converted to polygon coordinates. 2021-12-28 07:30:10,823 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: shuffle: False - shard 0 of 1 2021-12-28 07:30:10,829 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: sampling 1 datasets with weights: 2021-12-28 07:30:10,829 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: source: 0 weight: 1.000000 WARNING:tensorflow:Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f09583e23c8>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f09583e23c8>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code 2021-12-28 07:30:10,845 [WARNING] tensorflow: Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f09583e23c8>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f09583e23c8>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code 2021-12-28 07:30:11,125 [INFO] __main__: Found 18 samples in validation set WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/tfhooks/validation_hook.py:40: The name tf.summary.FileWriterCache is deprecated. Please use tf.compat.v1.summary.FileWriterCache instead. 2021-12-28 07:30:11,861 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/tfhooks/validation_hook.py:40: The name tf.summary.FileWriterCache is deprecated. Please use tf.compat.v1.summary.FileWriterCache instead. 2021-12-28 07:30:13,292 [INFO] __main__: Checkpoint interval: 10 WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/scripts/train.py:108: The name tf.train.Scaffold is deprecated. Please use tf.compat.v1.train.Scaffold instead. 2021-12-28 07:30:13,293 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/scripts/train.py:108: The name tf.train.Scaffold is deprecated. Please use tf.compat.v1.train.Scaffold instead. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/common/graph/initializers.py:14: The name tf.local_variables_initializer is deprecated. Please use tf.compat.v1.local_variables_initializer instead. 2021-12-28 07:30:13,293 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/common/graph/initializers.py:14: The name tf.local_variables_initializer is deprecated. Please use tf.compat.v1.local_variables_initializer instead. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/common/graph/initializers.py:15: The name tf.tables_initializer is deprecated. Please use tf.compat.v1.tables_initializer instead. 2021-12-28 07:30:13,294 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/common/graph/initializers.py:15: The name tf.tables_initializer is deprecated. Please use tf.compat.v1.tables_initializer instead. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/common/graph/initializers.py:16: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead. 2021-12-28 07:30:13,295 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/common/graph/initializers.py:16: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/tfhooks/utils.py:59: The name tf.train.LoggingTensorHook is deprecated. Please use tf.estimator.LoggingTensorHook instead. 2021-12-28 07:30:13,298 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/tfhooks/utils.py:59: The name tf.train.LoggingTensorHook is deprecated. Please use tf.estimator.LoggingTensorHook instead. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/tfhooks/utils.py:60: The name tf.train.StopAtStepHook is deprecated. Please use tf.estimator.StopAtStepHook instead. 2021-12-28 07:30:13,298 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/tfhooks/utils.py:60: The name tf.train.StopAtStepHook is deprecated. Please use tf.estimator.StopAtStepHook instead. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/tfhooks/utils.py:73: The name tf.train.StepCounterHook is deprecated. Please use tf.estimator.StepCounterHook instead. 2021-12-28 07:30:13,298 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/tfhooks/utils.py:73: The name tf.train.StepCounterHook is deprecated. Please use tf.estimator.StepCounterHook instead. INFO:tensorflow:Create CheckpointSaverHook. 2021-12-28 07:30:13,299 [INFO] tensorflow: Create CheckpointSaverHook. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/tfhooks/utils.py:99: The name tf.train.SummarySaverHook is deprecated. Please use tf.estimator.SummarySaverHook instead. 2021-12-28 07:30:13,299 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/tfhooks/utils.py:99: The name tf.train.SummarySaverHook is deprecated. Please use tf.estimator.SummarySaverHook instead. WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/training/utilities.py:140: The name tf.train.SingularMonitoredSession is deprecated. Please use tf.compat.v1.train.SingularMonitoredSession instead. 2021-12-28 07:30:13,300 [WARNING] tensorflow: From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/training/utilities.py:140: The name tf.train.SingularMonitoredSession is deprecated. Please use tf.compat.v1.train.SingularMonitoredSession instead. INFO:tensorflow:Graph was finalized. 2021-12-28 07:30:14,536 [INFO] tensorflow: Graph was finalized. INFO:tensorflow:Running local_init_op. 2021-12-28 07:30:16,823 [INFO] tensorflow: Running local_init_op. INFO:tensorflow:Done running local_init_op. 2021-12-28 07:30:17,613 [INFO] tensorflow: Done running local_init_op. INFO:tensorflow:Saving checkpoints for step-0. 2021-12-28 07:30:26,523 [INFO] tensorflow: Saving checkpoints for step-0. INFO:tensorflow:epoch = 0.0, learning_rate = 4.9999994e-06, loss = 0.09131467, step = 0 2021-12-28 07:30:57,713 [INFO] tensorflow: epoch = 0.0, learning_rate = 4.9999994e-06, loss = 0.09131467, step = 0 2021-12-28 07:30:57,722 [INFO] iva.detectnet_v2.tfhooks.task_progress_monitor_hook: Epoch 0/120: loss: 0.09131 learning rate: 0.00000 Time taken: 0:00:00 ETA: 0:00:00 2021-12-28 07:30:57,722 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 0.439 INFO:tensorflow:global_step/sec: 0.772853 2021-12-28 07:31:00,306 [INFO] tensorflow: global_step/sec: 0.772853 INFO:tensorflow:global_step/sec: 10.915 2021-12-28 07:31:00,489 [INFO] tensorflow: global_step/sec: 10.915 INFO:tensorflow:global_step/sec: 10.8179 2021-12-28 07:31:00,674 [INFO] tensorflow: global_step/sec: 10.8179 INFO:tensorflow:global_step/sec: 10.6503 2021-12-28 07:31:00,862 [INFO] tensorflow: global_step/sec: 10.6503 INFO:tensorflow:global_step/sec: 11.1249 2021-12-28 07:31:01,042 [INFO] tensorflow: global_step/sec: 11.1249 INFO:tensorflow:global_step/sec: 11.0209 2021-12-28 07:31:01,223 [INFO] tensorflow: global_step/sec: 11.0209 INFO:tensorflow:global_step/sec: 10.5862 2021-12-28 07:31:01,412 [INFO] tensorflow: global_step/sec: 10.5862 INFO:tensorflow:global_step/sec: 10.0341 2021-12-28 07:31:01,611 [INFO] tensorflow: global_step/sec: 10.0341 INFO:tensorflow:global_step/sec: 11.1387 2021-12-28 07:31:01,791 [INFO] tensorflow: global_step/sec: 11.1387 INFO:tensorflow:global_step/sec: 9.6168 2021-12-28 07:31:01,999 [INFO] tensorflow: global_step/sec: 9.6168 INFO:tensorflow:global_step/sec: 9.13294 2021-12-28 07:31:02,218 [INFO] tensorflow: global_step/sec: 9.13294 INFO:tensorflow:global_step/sec: 10.1474 2021-12-28 07:31:02,415 [INFO] tensorflow: global_step/sec: 10.1474 2021-12-28 07:31:02,416 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 7.246 INFO:tensorflow:global_step/sec: 10.1296 2021-12-28 07:31:02,612 [INFO] tensorflow: global_step/sec: 10.1296 INFO:tensorflow:epoch = 0.9655172413793103, learning_rate = 7.242517e-06, loss = 0.06743895, step = 28 (5.111 sec) 2021-12-28 07:31:02,824 [INFO] tensorflow: epoch = 0.9655172413793103, learning_rate = 7.242517e-06, loss = 0.06743895, step = 28 (5.111 sec) INFO:tensorflow:global_step/sec: 9.23476 2021-12-28 07:31:02,829 [INFO] tensorflow: global_step/sec: 9.23476 49da551de758:116:224 [0] NCCL INFO Bootstrap : Using [0]lo:127.0.0.1<0> [1]eth0:172.17.0.7<0> 49da551de758:116:224 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation 49da551de758:116:224 [0] NCCL INFO NET/IB : No device found. 49da551de758:116:224 [0] NCCL INFO NET/Socket : Using [0]lo:127.0.0.1<0> [1]eth0:172.17.0.7<0> 49da551de758:116:224 [0] NCCL INFO Using network Socket NCCL version 2.7.8+cuda11.1 49da551de758:116:224 [0] NCCL INFO Channel 00/32 : 0 49da551de758:116:224 [0] NCCL INFO Channel 01/32 : 0 49da551de758:116:224 [0] NCCL INFO Channel 02/32 : 0 .... Median Inference Time: 0.008003 INFO:tensorflow:epoch = 110.0, learning_rate = 1.7969065e-05, loss = 8.230345e-05, step = 3190 (9.965 sec) 2021-12-28 07:37:44,296 [INFO] tensorflow: epoch = 110.0, learning_rate = 1.7969065e-05, loss = 8.230345e-05, step = 3190 (9.965 sec) INFO:tensorflow:global_step/sec: 0.216576 2021-12-28 07:37:44,298 [INFO] tensorflow: global_step/sec: 0.216576 2021-12-28 07:37:44,302 [INFO] iva.detectnet_v2.tfhooks.task_progress_monitor_hook: Epoch 110/120: loss: 0.00008 learning rate: 0.00002 Time taken: 0:00:11.694104 ETA: 0:01:56.941044 INFO:tensorflow:global_step/sec: 10.2147 .... INFO:tensorflow:global_step/sec: 10.9742 2021-12-28 07:38:07,158 [INFO] tensorflow: global_step/sec: 10.9742 INFO:tensorflow:global_step/sec: 11.0977 2021-12-28 07:38:07,339 [INFO] tensorflow: global_step/sec: 11.0977 INFO:tensorflow:global_step/sec: 10.3461 2021-12-28 07:38:07,532 [INFO] tensorflow: global_step/sec: 10.3461 INFO:tensorflow:global_step/sec: 11.9319 2021-12-28 07:38:07,700 [INFO] tensorflow: global_step/sec: 11.9319 INFO:tensorflow:global_step/sec: 10.8791 2021-12-28 07:38:07,883 [INFO] tensorflow: global_step/sec: 10.8791 2021-12-28 07:38:07,975 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 43.965 INFO:tensorflow:global_step/sec: 10.9462 2021-12-28 07:38:08,066 [INFO] tensorflow: global_step/sec: 10.9462 2021-12-28 07:38:08,166 [INFO] iva.detectnet_v2.tfhooks.task_progress_monitor_hook: Epoch 119/120: loss: 0.00007 learning rate: 0.00001 Time taken: 0:00:02.648905 ETA: 0:00:02.648905 INFO:tensorflow:global_step/sec: 10.6033 2021-12-28 07:38:08,255 [INFO] tensorflow: global_step/sec: 10.6033 INFO:tensorflow:global_step/sec: 10.9142 2021-12-28 07:38:08,438 [INFO] tensorflow: global_step/sec: 10.9142 INFO:tensorflow:global_step/sec: 10.5721 2021-12-28 07:38:08,627 [INFO] tensorflow: global_step/sec: 10.5721 INFO:tensorflow:global_step/sec: 11.1025 2021-12-28 07:38:08,807 [INFO] tensorflow: global_step/sec: 11.1025 INFO:tensorflow:global_step/sec: 11.317 2021-12-28 07:38:08,984 [INFO] tensorflow: global_step/sec: 11.317 INFO:tensorflow:global_step/sec: 10.2896 2021-12-28 07:38:09,178 [INFO] tensorflow: global_step/sec: 10.2896 INFO:tensorflow:global_step/sec: 10.7394 2021-12-28 07:38:09,365 [INFO] tensorflow: global_step/sec: 10.7394 INFO:tensorflow:global_step/sec: 11.306 2021-12-28 07:38:09,542 [INFO] tensorflow: global_step/sec: 11.306 INFO:tensorflow:global_step/sec: 10.4033 2021-12-28 07:38:09,734 [INFO] tensorflow: global_step/sec: 10.4033 INFO:tensorflow:epoch = 119.6551724137931, learning_rate = 5.225487e-06, loss = 0.00011281592, step = 3470 (5.146 sec) 2021-12-28 07:38:09,919 [INFO] tensorflow: epoch = 119.6551724137931, learning_rate = 5.225487e-06, loss = 0.00011281592, step = 3470 (5.146 sec) INFO:tensorflow:global_step/sec: 10.5473 2021-12-28 07:38:09,924 [INFO] tensorflow: global_step/sec: 10.5473 INFO:tensorflow:global_step/sec: 11.345 2021-12-28 07:38:10,100 [INFO] tensorflow: global_step/sec: 11.345 INFO:tensorflow:global_step/sec: 11.0311 2021-12-28 07:38:10,281 [INFO] tensorflow: global_step/sec: 11.0311 2021-12-28 07:38:10,284 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 43.326 INFO:tensorflow:global_step/sec: 11.2454 2021-12-28 07:38:10,459 [INFO] tensorflow: global_step/sec: 11.2454 INFO:tensorflow:global_step/sec: 11.3238 2021-12-28 07:38:10,636 [INFO] tensorflow: global_step/sec: 11.3238 INFO:tensorflow:Saving checkpoints for step-3480. 2021-12-28 07:38:10,736 [INFO] tensorflow: Saving checkpoints for step-3480. WARNING:tensorflow:Ignoring: /tmp/tmpi08w9yct; No such file or directory 2021-12-28 07:38:10,979 [WARNING] tensorflow: Ignoring: /tmp/tmpi08w9yct; No such file or directory 2021-12-28 07:38:15,057 [INFO] iva.detectnet_v2.evaluation.evaluation: step 0 / 4, 0.00s/step Matching predictions to ground truth, class 1/3.: 100%|█| 3282/3282 [00:00<00:00, 24675.21it/s] Matching predictions to ground truth, class 3/3.: 100%|█| 1341/1341 [00:00<00:00, 15211.67it/s] Epoch 120/120 ========================= Validation cost: 0.000036 Mean average_precision (in %): 4.2630 class name average precision (in %) ------------ -------------------------- car 0 cyclist 0 pedestrian 12.7891 Median Inference Time: 0.007898 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:95: The name tf.reset_default_graph is deprecated. Please use tf.compat.v1.reset_default_graph instead. 2021-12-28 07:38:20,386 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:95: The name tf.reset_default_graph is deprecated. Please use tf.compat.v1.reset_default_graph instead. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:98: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead. 2021-12-28 07:38:20,386 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:98: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead. 2021-12-28 07:38:20,390 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 43.326 Time taken to run __main__:main: 0:08:27.855154. 2021-12-28 15:38:26,442 [INFO] tlt.components.docker_handler.docker_handler: Stopping container. 

Could you share your training spec?

The spec file is this: detectnet_v2_train_resnet18_kitti.txt

The validation set only contains 18 images.
Could you please check if these images have car and cyclist?

This is the result of converting the kitti dataset to tfrecords. I see that partition 0 is the validation set, which has both pedestrian and car. Do you think so?

Converting Tfrecords for kitti trainval dataset 2021-12-28 20:14:54,030 [INFO] root: Registry: ['nvcr.io'] 2021-12-28 20:14:54,860 [WARNING] tlt.components.docker_handler.docker_handler: Docker will run the commands as root. If you would like to retain your local host permissions, please add the "user":"UID:GID" in the DockerOptions portion of the "/root/.tao_mounts.json" file. You can obtain your users UID and GID by using the "id -u" and "id -g" commands on the terminal. Using TensorFlow backend. WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them. Using TensorFlow backend. 2021-12-28 12:15:04,243 - iva.detectnet_v2.dataio.build_converter - INFO - Instantiating a kitti converter 2021-12-28 12:15:04,244 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Creating output directory /workspace/tao-experiments/data/tfrecords/kitti_trainval 2021-12-28 12:15:04,244 - iva.detectnet_v2.dataio.kitti_converter_lib - INFO - Num images in Train: 114	Val: 18 2021-12-28 12:15:04,244 - iva.detectnet_v2.dataio.kitti_converter_lib - INFO - Validation data in partition 0. Hence, while choosing the validationset during training choose validation_fold 0. 2021-12-28 12:15:04,245 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 0, shard 0 WARNING:tensorflow:From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/dataio/dataset_converter_lib.py:142: The name tf.python_io.TFRecordWriter is deprecated. Please use tf.io.TFRecordWriter instead. 2021-12-28 12:15:04,245 - tensorflow - WARNING - From /root/.cache/bazel/_bazel_root/ed34e6d125608f91724fda23656f1726/execroot/ai_infra/bazel-out/k8-fastbuild/bin/magnet/packages/iva/build_wheel.runfiles/ai_infra/iva/detectnet_v2/dataio/dataset_converter_lib.py:142: The name tf.python_io.TFRecordWriter is deprecated. Please use tf.io.TFRecordWriter instead. /usr/local/lib/python3.6/dist-packages/iva/detectnet_v2/dataio/kitti_converter_lib.py:283: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default. 2021-12-28 12:15:04,253 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 0, shard 1 2021-12-28 12:15:04,254 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 0, shard 2 2021-12-28 12:15:04,256 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 0, shard 3 2021-12-28 12:15:04,257 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 0, shard 4 2021-12-28 12:15:04,258 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 0, shard 5 2021-12-28 12:15:04,259 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 0, shard 6 2021-12-28 12:15:04,261 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 0, shard 7 2021-12-28 12:15:04,262 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 0, shard 8 2021-12-28 12:15:04,263 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 0, shard 9 2021-12-28 12:15:04,273 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Wrote the following numbers of objects: b'pedestrian': 21 b'car': 10 2021-12-28 12:15:04,273 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 1, shard 0 2021-12-28 12:15:04,285 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 1, shard 1 2021-12-28 12:15:04,298 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 1, shard 2 2021-12-28 12:15:04,310 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 1, shard 3 2021-12-28 12:15:04,323 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 1, shard 4 2021-12-28 12:15:04,336 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 1, shard 5 2021-12-28 12:15:04,350 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 1, shard 6 2021-12-28 12:15:04,363 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 1, shard 7 2021-12-28 12:15:04,377 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 1, shard 8 2021-12-28 12:15:04,390 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Writing partition 1, shard 9 2021-12-28 12:15:04,407 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Wrote the following numbers of objects: b'pedestrian': 222 b'car': 30 2021-12-28 12:15:04,408 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Cumulative object statistics 2021-12-28 12:15:04,408 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Wrote the following numbers of objects: b'pedestrian': 243 b'car': 40 2021-12-28 12:15:04,408 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Class map. Label in GT: Label in tfrecords file b'pedestrian': b'pedestrian' b'car': b'car' For the dataset_config in the experiment_spec, please use labels in the tfrecords file, while writing the classmap. 2021-12-28 12:15:04,408 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO - Tfrecords generation complete. 2021-12-28 20:15:06,076 [INFO] tlt.components.docker_handler.docker_handler: Stopping container. 

The following is the content of the generated file.


The following is the generated file.
kitti_trainval-fold-000-of-002-shard-00009-of-00010 (5.7 KB)
Is it because there are too few datasets?please help me.

So the 18 validation dataset contain 10 cars and 21 pedestrians.
How about the resolution of the car? Is it small?

Firstly, the resolution of image is 19201040.
This is the kitti data label. It can be seen that the resolution of car is 255
234, which is not very small.
car 0.00 0 0.00 646 261 901 495 0.00 0.00 0.00 0.00 0.00 0.00 0.00
It can be seen that the resolution of pedestrian is 120*321.

pedestrian 0.00 0 0.00 716 485 836 806 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Can you upload your training spec file? Thanks.

detectnet_v2_train_resnet18_kitti.txt (5.5 KB)
I suspect that the data path is not written correctly? Thanks.

Please modify

output_image_width: 1248 output_image_height: 384 

to

output_image_width: 960 output_image_height: 544 

And also set

enable_auto _resize: True

Refer to DetectNet_v2 - NVIDIA Docs

Thank you so much!
One is to solve this problem for me, and the other is to give me instructions on the configuration of the parameters.
However, I still have a few small questions.

  1. Is the width and height of the output image based on the width and height of the input image? Why not change it to 19201040 (my image resolution) but modify it to 960544?
  2. I use this spec file with higher accuracy.
    detectnet_v2_train_resnet18_kitti.txt (4.3 KB)
Epoch 120/120 ========================= Validation cost: 0.000059 Mean average_precision (in %): 51.3095 class name average precision (in %) ------------ -------------------------- car 8.33333 pedestrian 94.2857 Median Inference Time: 0.008700 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:95: The name tf.reset_default_graph is deprecated. Please use tf.compat.v1.reset_default_graph instead. 2021-12-29 07:50:59,392 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:95: The name tf.reset_default_graph is deprecated. Please use tf.compat.v1.reset_default_graph instead. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:98: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead. 2021-12-29 07:50:59,392 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:98: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead. 2021-12-29 07:50:59,396 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 41.936 

I use this spec file, but the accuracy is not high. why?
detectnet_v2_train_resnet18_kitti_copy2.txt (5.5 KB)

Epoch 120/120 ========================= Validation cost: 0.000060 Mean average_precision (in %): 22.3850 class name average precision (in %) ------------ -------------------------- car 0.1607 cyclist 0 pedestrian 66.9942 Median Inference Time: 0.009179 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:95: The name tf.reset_default_graph is deprecated. Please use tf.compat.v1.reset_default_graph instead. 2021-12-29 07:39:32,000 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:95: The name tf.reset_default_graph is deprecated. Please use tf.compat.v1.reset_default_graph instead. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:98: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead. 2021-12-29 07:39:32,000 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:98: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead. 2021-12-29 07:39:32,003 [INFO] modulus.hooks.sample_counter_hook: Train Samples / sec: 41.889 Time taken to run __main__:main: 0:09:01.790022. 
  1. The first two questions are to pursue answers, and the last question is the problem I want to solve. Why is the accuracy of car still low?

For example, if you want to train a 960x544 model. You can set
output_image_width: 960
output_image_height: 544

Because you are using dashcamnet as the pretrained model. If you use ngc’s .hdf5 format pretrained model or do not use any pretrained model, you can set to other input_size. But please make user meet the requirement mentioned in (DetectNet_v2 - NVIDIA Docs)

For last question, the class weighting for car is different for the two experiments. Since there are no “cyclist” in your training dataset, please just run the 1st experiment.
More, please set car’s class_weight: 4.0 and pedestrian’s class_weight: 1.0 .

1 Like

Thank you very much! Your answer solved all my problems!
I modified the weights according to this,[quote=“Morganh, post:12, topic:199054”]
More, please set car’s class_weight: 4.0 and pedestrian’s class_weight: 1.0 .
[/quote] and the accuracy of the car has indeed improved.

Validation cost: 0.000044 Mean average_precision (in %): 56.4574 class name average precision (in %) ------------ -------------------------- car 20.1923 pedestrian 92.7225 Median Inference Time: 0.009450 
  1. Can you explain why this is modified? It should be related to cost function, but I don’t know what cost function is and what is the basis for weight modification.
  2. In addition, the accuracy of car is still very low, is it because the data set of car is too small? I have tried to modify the car’class_weight to 5, but the accuracy is also very low.

Yes, please train with more dataset. You can refer to jupyter notebook to use public KITTI dataset to train.

Since your dataset for car is less than pedestrian, so set a larger class-weighting for it.

Is there a limit? How to adjust the weight to be appropriate? Can you tell me the principle of adjustment? Is it possible to set 5, 10, 20, 30, etc.?

For example, if car has 10 objects, pedestrian has 50 objects. Roughly you can set car’s class weighting to 5 and pedestrian class weight to 1.

Understood, thank you!

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.