Reference documentation and code samples for the Cloud AutoML V1 API class Google::Cloud::AutoML::V1::ModelExportOutputConfig.
Output configuration for ModelExport Action.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#gcs_destination
def gcs_destination() -> ::Google::Cloud::AutoML::V1::GcsDestination-  (::Google::Cloud::AutoML::V1::GcsDestination) — Required. The Google Cloud Storage location where the model is to be written to. This location may only be set for the following model formats: "tflite", "edgetpu_tflite", "tf_saved_model", "tf_js", "core_ml".Under the directory given as the destination a new one with name "model-export- 
#gcs_destination=
def gcs_destination=(value) -> ::Google::Cloud::AutoML::V1::GcsDestination-  value (::Google::Cloud::AutoML::V1::GcsDestination) — Required. The Google Cloud Storage location where the model is to be written to. This location may only be set for the following model formats: "tflite", "edgetpu_tflite", "tf_saved_model", "tf_js", "core_ml".Under the directory given as the destination a new one with name "model-export- 
-  (::Google::Cloud::AutoML::V1::GcsDestination) — Required. The Google Cloud Storage location where the model is to be written to. This location may only be set for the following model formats: "tflite", "edgetpu_tflite", "tf_saved_model", "tf_js", "core_ml".Under the directory given as the destination a new one with name "model-export- 
#model_format
def model_format() -> ::String-  (::String) — The format in which the model must be exported. The available, and default, formats depend on the problem and model type (if given problem and type combination doesn't have a format listed, it means its models are not exportable): - For Image Classification mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite" (default), "edgetpu_tflite", "tf_saved_model", "tf_js", "docker". 
- For Image Classification mobile-core-ml-low-latency-1, mobile-core-ml-versatile-1, mobile-core-ml-high-accuracy-1: "core_ml" (default). 
- For Image Object Detection mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite", "tf_saved_model", "tf_js". Formats description: 
- tflite - Used for Android mobile devices. 
- edgetpu_tflite - Used for Edge TPU devices. 
- tf_saved_model - A tensorflow model in SavedModel format. 
- tf_js - A TensorFlow.js model that can be used in the browser and in Node.js using JavaScript. 
- docker - Used for Docker containers. Use the params field to customize the container. The container is verified to work correctly on ubuntu 16.04 operating system. See more at containers quickstart 
- core_ml - Used for iOS mobile devices. 
 
#model_format=
def model_format=(value) -> ::String-  value (::String) — The format in which the model must be exported. The available, and default, formats depend on the problem and model type (if given problem and type combination doesn't have a format listed, it means its models are not exportable): - For Image Classification mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite" (default), "edgetpu_tflite", "tf_saved_model", "tf_js", "docker". 
- For Image Classification mobile-core-ml-low-latency-1, mobile-core-ml-versatile-1, mobile-core-ml-high-accuracy-1: "core_ml" (default). 
- For Image Object Detection mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite", "tf_saved_model", "tf_js". Formats description: 
- tflite - Used for Android mobile devices. 
- edgetpu_tflite - Used for Edge TPU devices. 
- tf_saved_model - A tensorflow model in SavedModel format. 
- tf_js - A TensorFlow.js model that can be used in the browser and in Node.js using JavaScript. 
- docker - Used for Docker containers. Use the params field to customize the container. The container is verified to work correctly on ubuntu 16.04 operating system. See more at containers quickstart 
- core_ml - Used for iOS mobile devices. 
 
-  (::String) — The format in which the model must be exported. The available, and default, formats depend on the problem and model type (if given problem and type combination doesn't have a format listed, it means its models are not exportable): - For Image Classification mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite" (default), "edgetpu_tflite", "tf_saved_model", "tf_js", "docker". 
- For Image Classification mobile-core-ml-low-latency-1, mobile-core-ml-versatile-1, mobile-core-ml-high-accuracy-1: "core_ml" (default). 
- For Image Object Detection mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite", "tf_saved_model", "tf_js". Formats description: 
- tflite - Used for Android mobile devices. 
- edgetpu_tflite - Used for Edge TPU devices. 
- tf_saved_model - A tensorflow model in SavedModel format. 
- tf_js - A TensorFlow.js model that can be used in the browser and in Node.js using JavaScript. 
- docker - Used for Docker containers. Use the params field to customize the container. The container is verified to work correctly on ubuntu 16.04 operating system. See more at containers quickstart 
- core_ml - Used for iOS mobile devices. 
 
#params
def params() -> ::Google::Protobuf::Map{::String => ::String}-  (::Google::Protobuf::Map{::String => ::String}) — Additional model-type and format specific parameters describing the requirements for the to be exported model files, any string must be up to 25000 characters long. - For dockerformat:cpu_architecture- (string) "x86_64" (default).gpu_architecture- (string) "none" (default), "nvidia".
 
- For 
#params=
def params=(value) -> ::Google::Protobuf::Map{::String => ::String}-  value (::Google::Protobuf::Map{::String => ::String}) — Additional model-type and format specific parameters describing the requirements for the to be exported model files, any string must be up to 25000 characters long. - For dockerformat:cpu_architecture- (string) "x86_64" (default).gpu_architecture- (string) "none" (default), "nvidia".
 
- For 
-  (::Google::Protobuf::Map{::String => ::String}) — Additional model-type and format specific parameters describing the requirements for the to be exported model files, any string must be up to 25000 characters long. - For dockerformat:cpu_architecture- (string) "x86_64" (default).gpu_architecture- (string) "none" (default), "nvidia".
 
- For