JDBC to BigQuery template

Use the Serverless for Apache Spark JDBC to BigQuery template to extract data from JDBC databases to BigQuery.

This template supports the following databases as input:

  • MySQL
  • PostgreSQL
  • Microsoft SQL Server
  • Oracle

Use the template

Run the template using the gcloud CLI or Dataproc API.

gcloud

Before using any of the command data below, make the following replacements:

  • PROJECT_ID: Required. Your Google Cloud project ID listed in the IAM Settings.
  • REGION: Required. Compute Engine region.
  • TEMPLATE_VERSION: Required. Specify latest for the latest template version, or the date of a specific version, for example, 2023-03-17_v0.1.0-beta (visit gs://dataproc-templates-binaries or run gcloud storage ls gs://dataproc-templates-binaries to list available template versions).
  • SUBNET: Optional. If a subnet is not specified, the subnet in the specified REGION in the default network is selected.

    Example: projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME

  • JDBC_CONNECTOR_CLOUD_STORAGE_PATH: Required. The full Cloud Storage path, including the filename, where the JDBC connector jar is stored. You can use the following commands to download JDBC connectors for uploading to Cloud Storage:
    • MySQL:
       wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz 
    • Postgres SQL:
       wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar 
    • Microsoft SQL Server:
       wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar 
    • Oracle:
       wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar 
  • DATASET and TABLE: Required. Destination BigQuery dataset and table.
  • The following variables are used to construct the required JDBC_CONNECTION_URL:
    • JDBC_HOST
    • JDBC_PORT
    • JDBC_DATABASE, or, for Oracle, JDBC_SERVICE
    • JDBC_USERNAME
    • JDBC_PASSWORD

    Construct the JDBC_CONNECTION_URL using one of the following connector-specific formats:

    • MySQL:
       jdbc:mysql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD 
    • Postgres SQL:
       jdbc:postgresql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD 
    • Microsoft SQL Server:
       jdbc:sqlserver://JDBC_HOST:JDBC_PORT;databaseName=JDBC_DATABASE;user=JDBC_USERNAME;password=JDBC_PASSWORD 
    • Oracle:
       jdbc:oracle:thin:@//JDBC_HOST:JDBC_PORT/JDBC_SERVICE?user=JDBC_USERNAME&password=JDBC_PASSWORD 
  • DRIVER: Required. The JDBC driver which will be used for the connection:
    • MySQL:
       com.mysql.cj.jdbc.Driver 
    • Postgres SQL:
       org.postgresql.Driver 
    • Microsoft SQL Server:
       com.microsoft.sqlserver.jdbc.SQLServerDriver 
    • Oracle:
       oracle.jdbc.driver.OracleDriver 
  • QUERY: Required. SQL Query to extract data from JDBC.
  • MODE: Required. Write mode for BigQuery output. Options: append, overwrite, ignore, or errorifexists.
  • TEMP_BUCKET: Required. Cloud Storage bucket name. This bucket is used for BigQuery loading.

    Example: gs://dataproc-templates/jdbc_to_cloud_storage_output

  • INPUT_PARTITION_COLUMN, LOWERBOUND, UPPERBOUND, PARTITIONS: Optional. If used, all of the following parameters must be specified:
    • INPUT_PARTITION_COLUMN: JDBC input table partition column name.
    • LOWERBOUND: JDBC input table partition column lower bound used to determine the partition stride.
    • UPPERBOUND: JDBC input table partition column upper bound used to decide the partition stride.
    • PARTITIONS: The maximum number of partitions that can be used for parallelism of table reads and writes. If specified, this value is used for the JDBC input and output connection. Default: 10.
  • FETCHSIZE: Optional. How many rows to fetch per round trip. Default: 10.
  • TEMPVIEW and SQL_QUERY: Optional. You can use these two optional parameters to apply a Spark SQL transformation while loading data into BigQuery. TEMPVIEW is the temporary view name, and SQL_QUERY is the query statement. TEMPVIEW and the table name in SQL_QUERY must match.
  • SERVICE_ACCOUNT: Optional. If not provided, the default Compute Engine service account is used.
  • PROPERTY and PROPERTY_VALUE: Optional. Comma-separated list of Spark property=value pairs.
  • LABEL and LABEL_VALUE: Optional. Comma-separated list of label=value pairs.
  • LOG_LEVEL: Optional. Level of logging. Can be one of ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, or WARN. Default: INFO.
  • KMS_KEY: Optional. The Cloud Key Management Service key to use for encryption. If a key is not specified, data is encrypted at rest using a Google-owned and Google-managed encryption key.

    Example: projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME

Execute the following command:

Linux, macOS, or Cloud Shell

gcloud dataproc batches submit spark \  --class=com.google.cloud.dataproc.templates.main.DataProcTemplate \  --version="1.2" \  --project="PROJECT_ID" \  --region="REGION" \  --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" \  --subnet="SUBNET" \  --kms-key="KMS_KEY" \  --service-account="SERVICE_ACCOUNT" \  --properties="PROPERTY=PROPERTY_VALUE" \  --labels="LABEL=LABEL_VALUE" \  -- --template=JDBCTOBIGQUERY \  --templateProperty log.level="LOG_LEVEL" \  --templateProperty jdbctobq.bigquery.location="DATASET.TABLE" \  --templateProperty jdbctobq.jdbc.url="JDBC_CONNECTION_URL" \  --templateProperty jdbctobq.jdbc.driver.class.name="DRIVER" \  --templateProperty jdbctobq.write.mode="MODE" \  --templateProperty jdbctobq.temp.gcs.bucket="TEMP_BUCKET" \  --templateProperty jdbctobq.sql="QUERY" \  --templateProperty jdbctobq.sql.numPartitions="PARTITIONS" \  --templateProperty jdbctobq.sql.partitionColumn="INPUT_PARTITION_COLUMN" \  --templateProperty jdbctobq.sql.lowerBound="LOWERBOUND" \  --templateProperty jdbctobq.sql.upperBound="UPPERBOUND" \  --templateProperty jdbctobq.jdbc.fetchsize="FETCHSIZE" \  --templateProperty jdbctobq.temp.table="TEMPVIEW" \  --templateProperty jdbctobq.temp.query="SQL_QUERY"

Windows (PowerShell)

gcloud dataproc batches submit spark `  --class=com.google.cloud.dataproc.templates.main.DataProcTemplate `  --version="1.2" `  --project="PROJECT_ID" `  --region="REGION" `  --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" `  --subnet="SUBNET" `  --kms-key="KMS_KEY" `  --service-account="SERVICE_ACCOUNT" `  --properties="PROPERTY=PROPERTY_VALUE" `  --labels="LABEL=LABEL_VALUE" `  -- --template=JDBCTOBIGQUERY `  --templateProperty log.level="LOG_LEVEL" `  --templateProperty jdbctobq.bigquery.location="DATASET.TABLE" `  --templateProperty jdbctobq.jdbc.url="JDBC_CONNECTION_URL" `  --templateProperty jdbctobq.jdbc.driver.class.name="DRIVER" `  --templateProperty jdbctobq.write.mode="MODE" `  --templateProperty jdbctobq.temp.gcs.bucket="TEMP_BUCKET" `  --templateProperty jdbctobq.sql="QUERY" `  --templateProperty jdbctobq.sql.numPartitions="PARTITIONS" `  --templateProperty jdbctobq.sql.partitionColumn="INPUT_PARTITION_COLUMN" `  --templateProperty jdbctobq.sql.lowerBound="LOWERBOUND" `  --templateProperty jdbctobq.sql.upperBound="UPPERBOUND" `  --templateProperty jdbctobq.jdbc.fetchsize="FETCHSIZE" `  --templateProperty jdbctobq.temp.table="TEMPVIEW" `  --templateProperty jdbctobq.temp.query="SQL_QUERY"

Windows (cmd.exe)

gcloud dataproc batches submit spark ^  --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ^  --version="1.2" ^  --project="PROJECT_ID" ^  --region="REGION" ^  --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" ^  --subnet="SUBNET" ^  --kms-key="KMS_KEY" ^  --service-account="SERVICE_ACCOUNT" ^  --properties="PROPERTY=PROPERTY_VALUE" ^  --labels="LABEL=LABEL_VALUE" ^  -- --template=JDBCTOBIGQUERY ^  --templateProperty log.level="LOG_LEVEL" ^  --templateProperty jdbctobq.bigquery.location="DATASET.TABLE" ^  --templateProperty jdbctobq.jdbc.url="JDBC_CONNECTION_URL" ^  --templateProperty jdbctobq.jdbc.driver.class.name="DRIVER" ^  --templateProperty jdbctobq.write.mode="MODE" ^  --templateProperty jdbctobq.temp.gcs.bucket="TEMP_BUCKET" ^  --templateProperty jdbctobq.sql="QUERY" ^  --templateProperty jdbctobq.sql.numPartitions="PARTITIONS" ^  --templateProperty jdbctobq.sql.partitionColumn="INPUT_PARTITION_COLUMN" ^  --templateProperty jdbctobq.sql.lowerBound="LOWERBOUND" ^  --templateProperty jdbctobq.sql.upperBound="UPPERBOUND" ^  --templateProperty jdbctobq.jdbc.fetchsize="FETCHSIZE" ^  --templateProperty jdbctobq.temp.table="TEMPVIEW" ^  --templateProperty jdbctobq.temp.query="SQL_QUERY"

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Required. Your Google Cloud project ID listed in the IAM Settings.
  • REGION: Required. Compute Engine region.
  • TEMPLATE_VERSION: Required. Specify latest for the latest template version, or the date of a specific version, for example, 2023-03-17_v0.1.0-beta (visit gs://dataproc-templates-binaries or run gcloud storage ls gs://dataproc-templates-binaries to list available template versions).
  • SUBNET: Optional. If a subnet is not specified, the subnet in the specified REGION in the default network is selected.

    Example: projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME

  • JDBC_CONNECTOR_CLOUD_STORAGE_PATH: Required. The full Cloud Storage path, including the filename, where the JDBC connector jar is stored. You can use the following commands to download JDBC connectors for uploading to Cloud Storage:
    • MySQL:
       wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz 
    • Postgres SQL:
       wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar 
    • Microsoft SQL Server:
       wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar 
    • Oracle:
       wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar 
  • DATASET and TABLE: Required. Destination BigQuery dataset and table.
  • The following variables are used to construct the required JDBC_CONNECTION_URL:
    • JDBC_HOST
    • JDBC_PORT
    • JDBC_DATABASE, or, for Oracle, JDBC_SERVICE
    • JDBC_USERNAME
    • JDBC_PASSWORD

    Construct the JDBC_CONNECTION_URL using one of the following connector-specific formats:

    • MySQL:
       jdbc:mysql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD 
    • Postgres SQL:
       jdbc:postgresql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD 
    • Microsoft SQL Server:
       jdbc:sqlserver://JDBC_HOST:JDBC_PORT;databaseName=JDBC_DATABASE;user=JDBC_USERNAME;password=JDBC_PASSWORD 
    • Oracle:
       jdbc:oracle:thin:@//JDBC_HOST:JDBC_PORT/JDBC_SERVICE?user=JDBC_USERNAME&password=JDBC_PASSWORD 
  • DRIVER: Required. The JDBC driver which will be used for the connection:
    • MySQL:
       com.mysql.cj.jdbc.Driver 
    • Postgres SQL:
       org.postgresql.Driver 
    • Microsoft SQL Server:
       com.microsoft.sqlserver.jdbc.SQLServerDriver 
    • Oracle:
       oracle.jdbc.driver.OracleDriver 
  • QUERY: Required. SQL Query to extract data from JDBC.
  • MODE: Required. Write mode for BigQuery output. Options: append, overwrite, ignore, or errorifexists.
  • TEMP_BUCKET: Required. Cloud Storage bucket name. This bucket is used for BigQuery loading.

    Example: gs://dataproc-templates/jdbc_to_cloud_storage_output

  • INPUT_PARTITION_COLUMN, LOWERBOUND, UPPERBOUND, PARTITIONS: Optional. If used, all of the following parameters must be specified:
    • INPUT_PARTITION_COLUMN: JDBC input table partition column name.
    • LOWERBOUND: JDBC input table partition column lower bound used to determine the partition stride.
    • UPPERBOUND: JDBC input table partition column upper bound used to decide the partition stride.
    • PARTITIONS: The maximum number of partitions that can be used for parallelism of table reads and writes. If specified, this value is used for the JDBC input and output connection. Default: 10.
  • FETCHSIZE: Optional. How many rows to fetch per round trip. Default: 10.
  • TEMPVIEW and SQL_QUERY: Optional. You can use these two optional parameters to apply a Spark SQL transformation while loading data into BigQuery. TEMPVIEW is the temporary view name, and SQL_QUERY is the query statement. TEMPVIEW and the table name in SQL_QUERY must match.
  • SERVICE_ACCOUNT: Optional. If not provided, the default Compute Engine service account is used.
  • PROPERTY and PROPERTY_VALUE: Optional. Comma-separated list of Spark property=value pairs.
  • LABEL and LABEL_VALUE: Optional. Comma-separated list of label=value pairs.
  • LOG_LEVEL: Optional. Level of logging. Can be one of ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, or WARN. Default: INFO.
  • KMS_KEY: Optional. The Cloud Key Management Service key to use for encryption. If a key is not specified, data is encrypted at rest using a Google-owned and Google-managed encryption key.

    Example: projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME

HTTP method and URL:

POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/batches

Request JSON body:

 { "environmentConfig": { "executionConfig": { "subnetworkUri": "SUBNET", "kmsKey": "KMS_KEY", "serviceAccount": "SERVICE_ACCOUNT" } }, "labels": { "LABEL": "LABEL_VALUE" }, "runtimeConfig": { "version": "1.2", "properties": { "PROPERTY": "PROPERTY_VALUE" } }, "sparkBatch": { "mainClass": "com.google.cloud.dataproc.templates.main.DataProcTemplate", "args": [ "--template","JDBCTOBIGQUERY", "--templateProperty","log.level=LOG_LEVEL", "--templateProperty","jdbctobq.bigquery.location=DATASET.TABLE", "--templateProperty","jdbctobq.jdbc.url=JDBC_CONNECTION_URL", "--templateProperty","jdbctobq.jdbc.driver.class.name=DRIVER", "--templateProperty","jdbctobq.sql=QUERY", "--templateProperty","jdbctobq.write.mode=MODE", "--templateProperty","jdbctobq.temp.gcs.bucket=TEMP_BUCKET", "--templateProperty","jdbctobq.sql.partitionColumn=INPUT_PARTITION_COLUMN", "--templateProperty","jdbctobq.sql.lowerBound=LOWERBOUND", "--templateProperty","jdbctobq.sql.upperBound=UPPERBOUND", "--templateProperty","jdbctobq.sql.numPartitions=PARTITIONS", "--templateProperty","jdbctobq.jdbc.fetchsize=FETCHSIZE" ], "jarFileUris": [ "gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar","gs://JDBC_CONNECTOR_GCS_PATH" ] } } 

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

 { "name": "projects/PROJECT_ID/regions/REGION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.dataproc.v1.BatchOperationMetadata", "batch": "projects/PROJECT_ID/locations/REGION/batches/BATCH_ID", "batchUuid": "de8af8d4-3599-4a7c-915c-798201ed1583", "createTime": "2023-02-24T03:31:03.440329Z", "operationType": "BATCH", "description": "Batch" } }