Run in Google Colab | View source on GitHub |
This notebook shows how to use the Apache Beam RunInference transform for TensorFlow with a trained model from TensorFlow Hub. Apache Beam includes built-in support for two TensorFlow model handlers: TFModelHandlerNumpy and TFModelHandlerTensor.
- Use
TFModelHandlerNumpyto run inference on models that expect a NumPy array as an input. - Use
TFModelHandlerTensorto run inference on models expecting a tensor as an input.
For more information about using RunInference, see Get started with AI/ML pipelines in the Apache Beam documentation.
Before you begin
First, import tensorflow. To use RunInference with the TensorFlow model handler, install Apache Beam version 2.46 or later.
pip install tensorflowpip install apache_beam[interactive]==2.46.0
Use TensorFlow Hub's trained model URL
To use TensorFlow Hub's trained model URL, pass the model URL to the model_uri field of TFModelHandler class.
import tensorflow as tf import tensorflow_hub as hub import apache_beam as beam # URL of the trained model from TensorFlow Hub CLASSIFIER_URL ="https://tfhub.dev/google/tf2-preview/mobilenet_v2/classification/4" import numpy as np import PIL.Image as Image IMAGE_RES = 224 img = tf.keras.utils.get_file(origin='https://storage.googleapis.com/apache-beam-samples/image_captioning/Cat-with-beanie.jpg') img = Image.open(img).resize((IMAGE_RES, IMAGE_RES)) img Downloading data from https://storage.googleapis.com/apache-beam-samples/image_captioning/Cat-with-beanie.jpg 1812110/1812110 [==============================] - 0s 0us/step

# Convert the input image to the type and dimensions required by the model. img = np.array(img)/255.0 img_tensor = tf.cast(tf.convert_to_tensor(img[...]), dtype=tf.float32) from apache_beam.ml.inference.tensorflow_inference import TFModelHandlerTensor from apache_beam.ml.inference.base import PredictionResult from apache_beam.ml.inference.base import RunInference from typing import Iterable model_handler = TFModelHandlerTensor(model_uri=CLASSIFIER_URL) class PostProcessor(beam.DoFn): """Process the PredictionResult to get the predicted label. Returns predicted label. """ def setup(self): labels_path = tf.keras.utils.get_file( 'ImageNetLabels.txt', 'https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt' ) self._imagenet_labels = np.array(open(labels_path).read().splitlines()) def process(self, element: PredictionResult) -> Iterable[str]: predicted_class = np.argmax(element.inference) predicted_class_name = self._imagenet_labels[predicted_class] yield "Predicted Label: {}".format(predicted_class_name.title()) with beam.Pipeline() as p: _ = (p | "Create PCollection" >> beam.Create([img_tensor]) | "Perform inference" >> RunInference(model_handler) | "Post Processing" >> beam.ParDo(PostProcessor()) | "Print" >> beam.Map(print)) Predicted Label: Tiger Cat
Run in Google Colab
View source on GitHub