阿里云大数据利器之-RDS迁移到Maxcompute实现动态分区

简介: 当前,很多用户的业务数据存放在传统关系型数据库上,例如阿里云的RDS,做业务读写操作。当数据量非常大的时候,此时传系关系型数据库会显得有些吃力,那么会经常有将mysql数据库的数据迁移到[大数据处理平台-大数据计算服务(Maxcompute,原ODPS)(https://www.aliyun.com/product/odps?spm=5176.doc27800.765261.309.dcjpg2),利用其强大的存储和计算能力进行各种查询计算,结果再回流到RDS。
当前,很多用户的业务数据存放在传统关系型数据库上,例如阿里云的RDS,做业务读写操作。当数据量非常大的时候,此时传统关系型数据库会显得有些吃力,那么会经常有将mysql数据库的数据迁移到[大数据处理平台-大数据计算服务(Maxcompute,原ODPS)( https://www.aliyun.com/product/odps?spm=5176.doc27800.765261.309.dcjpg2),利用其强大的存储和计算能力进行各种查询计算,结果再回流到RDS。
         一般情况下,业务数据是按日期来区分的,有的静态数据可能是按照区域或者地域来区分,在Maxcompute中数据可以按照分区来存放,可以简单理解为一份数据放在不同的子目录下,子目录的名称以日期来命名。那么在RDS数据迁移到Maxcompute上的过程中,很多用户希望可以自动的创建分区,动态的将RDS中的数据,比如按日期区分的数据存放到Maxcompute中,这个流程自动化创建。同步的工具是使用Maxcompute的配套产品-[大数据开发套件]( https://data.aliyun.com/product/ide?spm=5176.7741945.765261.313.TQqfkK)。下面就举例说明RDS-Maxcompute自动分区几种方法的使用。
一,将RDS中的数据定时每天同步到Maxcompute中,自动创建按天日期的分区。
这里就要用到大数据开发套件-数据集成的功能,我们采用界面化的配置。
如图地方,设置Maxcompute的分区格式
7e6208ade7eb6988d5825185cdfcb21eee2fe20c
一般配置到这个地方的时候,默认是系统自带时间参数:${bdp.system.bizdate} 格式是yyyymmdd。也就是说在调度执行这个任务的时候,这个分区会被自动替换为 **任务执行日期的前一天**,相对用户比较方便的,因为一般用户业务数据是当前跑前一天的业务数据,这个日期也叫业务日期。
如图
742352e50f703175b018316749fae8b154756380

如果用户想使用当天任务运行的日期作为分区值,需要自定义这个参数,方法如图,也可以参考文档
https://help.aliyun.com/document_detail/30281.html?spm=5176.product30254.6.604.SDunjF
自定义的参数,格式非常灵活,日期是当天日期,用户可以自由选择哪一天,以及格式。
可供参考的变量参数配置方式如下:
后N年:$[add_months(yyyymmdd,12*N)]
前N年:$[add_months(yyyymmdd,-12*N)]
后N月:$[add_months(yyyymmdd,N)]
前N月:$[add_months(yyyymmdd,-N)]
后N周:$[yyyymmdd+7*N]
前N周:$[yyyymmdd-7*N]
后N天:$[yyyymmdd+N]
前N天:$[yyyymmdd-N]
后N小时:$[hh24miss+N/24]
前N小时:$[hh24miss-N/24]
后N分钟:$[hh24miss+N/24/60]
前N分钟:$[hh24miss-N/24/60]
注意:
请以中括号 [] 编辑自定义变量参数的取值计算公式,例如 key1=$[yyyy-mm-dd]。
默认情况下,自定义变量参数的计算单位为天。例如 $[hh24miss-N/24/60] 表示 (yyyymmddhh24miss-(N/24/60 * 1天)) 的计算结果,然后按 hh24miss 的格式取时分秒。
使用 add_months 的计算单位为月。例如 $[add_months(yyyymmdd,12 N)-M/24/60] 表示 (yyyymmddhh24miss-(12 N 1月))-(M/24/60 1天) 的结果,然后按 yyyymmdd 的格式取年月日。
如图,配置完成后,我们来测试运行看下,直接查看日志
e8db68c9ea59598baf83fbf25763252531592b3f
可以,看到日志中,Maxcompute(日志中打印原名ODPS)的信息中
partition分区,date_test=20170829,自动替换成功。
再看下实际的数据过去了没呢
91a1c862682c842c32d9d9301f0b81eb8f3b36d2
我们看到数据是过来了,成功自动创建了一个分区值。那么这个任务定时调度的时候,就会自动生成一个分区,每天自动的将RDS中的数据同步到Maxcompute中的按照日期创建的分区中。
二,如果用户的数据有很多运行日期之前的历史数据,怎么自动同步,自动分区呢。大数据开发套件-运维中心-有个补数据的功能。
首先,我们需要在RDS端把历史数据按照日期筛选出来,比如历史数据2017-08-25这天的数据,我要让他自动同步到Maxcompute的20170825的分区中。
在RDS阶段可以设置where过滤条件,如图
978e24ec0e6466cb970fdeaf6dace94d7300c9df
在Maxcompute页面,还是按照之前一样配置
5fca7fcd1e56cb358c1907239207f925f5a254d5
然后一定要 保存-提交。
提交后到运维中心-任务管理-图形模式-补数据
77eee8edaf1113290ce93d87a60ef89a56f1fa42
选择日期区间
585b37615ec748788bb5410f2509bd18b5312be4
提交运行,这个时候就会同时生成多个同步的任务实例按顺序执行
3d81a0e5e45d4b4ed5c7e369fc4006d51b807408
看下运行的日志,可以看到运行过程对RDS数据的抽取,在Maxcompute自动创建的分区
d33959555f20268e703470380d17258434bbc3a8
看下运行结果,数据写入的情况,自动创建了分区,数据同步过来了。
3a2a193e17534c06a3c9f1e29a20c9bea64c4c9a
三,如果用户数据量比较巨大,第一次全量的数据,或者并不是按照日期分区,是按照省份等分区。那么此时数据集成就不能做到自动分区了。也就是说,想按照RDS中某个字段进行hash,相同的字段值自动放到Maxcompute中以这个字段对应值的分区中。
同步本身是做不了的,是在Maxcompute中通过SQL完成,是Maxcompute的特有功能,实际上也是真正的动态分区,大家可以参考文章
。那么就需要我们先把数据全量同步到Maxcompute的一个临时表。
流程如下
1,先创建一个SQL脚本节点-用来创建临时表

drop table if exists emp_test_new_temp; CREATE TABLE emp_test_new_temp (date_time STRING,	name STRING,	age BIGINT,	sal DOUBLE);


2,创建同步任务的节点,就是简单的同步任务,将RDS数据全量同步到Maxcompute,不需要设置分区。
3,使用sql进行动态分区到目的表

drop table if exists emp_test_new; --创建一个ODPS分区表(最终目的表)	CREATE TABLE emp_test_new (	date_time STRING,	name STRING,	age BIGINT,	sal DOUBLE ) PARTITIONED BY (	date_test STRING ); --执行动态分区sql,按照临时表的字段date_time自动分区,date_time字段中相同的数据值,会按照这个数据值自动创建一个分区值 --例如date_time中有些数据是2017-08-25,会自动在ODPS分区表中创建一个分区,date=2017-08-25 --动态分区sql如下 --可以注意到sql中select的字段多写了一个date_time,就是指定按照这个字段自动创建分区 insert overwrite table emp_test_new partition(date_test)select date_time,name,age,sal,date_time from emp_test_new_temp --导入完成后,可以把临时表删除,节约存储成本 drop table if exists emp_test_new_temp;

最后将三个节点配置成一个工作流,按顺序执行

78b6ceb9adff0dcb1be35f1a44ad1eff0c507fc6

执行过程,我们重点观察,最后一个节点的动态分区过程

6ff3be2c9bf9aaa3cc83e9dc2f2c53fc1a6ddcea

最后,看下数据

258e38caedf94aa880c6f7188a865d977feb7694

完成动态分区,自动化分区。是不是很神奇,相同的日期数据,到了同一个分区里。如果是以省份命名,也是如此,我自己都怕了。

大数据开发套件实际上可以完成绝大部分的自动化作业,尤其是数据同步迁移,调度等,界面化操作使得数据集成变得简单,不用苦逼的加班搞ETL了,你懂的。


有对大数据技术感兴趣的,可以加笔者的微信 wx4085116.目前笔者已经从阿里离职,博客不代表阿里立场。笔者开了一个大数据培训班。有兴趣的加我。





相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
1月前
|
NoSQL 算法 Redis
【Docker】(3)学习Docker中 镜像与容器数据卷、映射关系!手把手带你安装 MySql主从同步 和 Redis三主三从集群!并且进行主从切换与扩容操作,还有分析 哈希分区 等知识点!
Union文件系统(UnionFS)是一种**分层、轻量级并且高性能的文件系统**,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem) Union 文件系统是 Docker 镜像的基础。 镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
295 5
|
2月前
|
SQL 关系型数据库 MySQL
阿里云的云数据库RDS简介
阿里云关系型数据库RDS(Relational Database Service)是一种安全稳定、高性价比、可弹性伸缩的在线数据库服务。支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供容灾、备份、恢复、监控、迁移等全套解决方案,帮助用户轻松应对数据库运维挑战。RDS具备高可用性、高安全性、轻量运维和弹性伸缩等优势,适用于各类业务场景,助力企业降低成本、提升效率。
|
4月前
|
关系型数据库 MySQL 索引
mysql中的索引和分区
在MySQL中,索引和分区是提高查询效率的关键技术。通过创建合适的索引,可以显著提升数据检索速度。而分区可以作为作为进一步提高查询效率的方式,在较大数据量时通常可以使用这两个结合的方式优化查询速度,所以这边将这两个进行整理,巩固个人知识,同时也希望帮助到有需要的朋友。
103 2
|
9月前
|
关系型数据库 数据库 数据安全/隐私保护
云数据库实战:基于阿里云RDS的Python应用开发与优化
在互联网时代,数据驱动的应用已成为企业竞争力的核心。阿里云RDS为开发者提供稳定高效的数据库托管服务,支持多种数据库引擎,具备自动化管理、高可用性和弹性扩展等优势。本文通过Python应用案例,从零开始搭建基于阿里云RDS的数据库应用,详细演示连接、CRUD操作及性能优化与安全管理实践,帮助读者快速上手并提升应用性能。
|
10月前
|
SQL 人工智能 关系型数据库
【PG锦囊】阿里云 RDS PostgreSQL 版插件—AI 插件(rds_ai)
本文介绍了AI 插件(rds_ai)的核心优势、适用场景等,帮助您更好地了解 rds_ai 插件。想了解更多 RDS 插件信息和讨论交流,欢迎加入 RDS PG 插件用户专项服务群(103525002795)
|
10月前
|
运维 关系型数据库 MySQL
体验领礼啦!体验自建数据库迁移到阿里云数据库RDS,领取桌面置物架!
「技术解决方案【Cloud Up 挑战赛】」上线!本方案介绍如何将自建数据库平滑迁移至云数据库RDS,解决业务增长带来的运维难题。通过使用RDS MySQL,您可获得稳定、可靠和安全的企业级数据库服务,专注于核心业务发展。完成任务即可领取桌面置物架,每个工作日限量50个,先到先得。
|
容灾 关系型数据库 数据库
阿里云RDS服务巴黎奥运会赛事系统,助力云上奥运稳定运行
2024年巴黎奥运会,阿里云作为官方云服务合作伙伴,提供了稳定的技术支持。云数据库RDS通过备份恢复、实时监控、容灾切换等产品能力,确保了赛事系统的平稳运行。
 阿里云RDS服务巴黎奥运会赛事系统,助力云上奥运稳定运行
|
SQL 监控 关系型数据库
MySQL如何查看每个分区的数据量
通过本文的介绍,您可以使用MySQL的 `INFORMATION_SCHEMA`查询每个分区的数据量。了解分区数据量对数据库优化和管理具有重要意义,可以帮助您优化查询性能、平衡数据负载和监控数据库健康状况。希望本文对您在MySQL分区管理和性能优化方面有所帮助。
1039 1
|
存储 关系型数据库 MySQL
MySQL 如何查看每个分区的数据量
MySQL 如何查看每个分区的数据量
675 3

热门文章

最新文章

相关产品

  • 云原生大数据计算服务 MaxCompute
  • 推荐镜像

    查看更多
    下一篇