【大数据干货】轻松处理每天2TB的日志数据,支撑运营团队进行大数据分析挖掘,随时洞察用户个性化需求。

简介: “用户每天产生的日志量大约在2TB。我们需要将这些海量的数据导入云端,然后分天、分小时的展开数据分析作业,分析结果再导入数据库和报表系统,最终展示在运营人员面前。”墨迹天气运维部经理章汉龙介绍,整个过程中数据量庞大,且计算复杂,这对云平台的大数据能力、生态完整性和开放性提

免费开通大数据服务:https://www.aliyun.com/product/odps

“用户每天产生的日志量大约在2TB。我们需要将这些海量的数据导入云端,然后分天、分小时的展开数据分析作业,分析结果再导入数据库和报表系统,最终展示在运营人员面前。”墨迹天气运维部经理章汉龙介绍,整个过程中数据量庞大,且计算复杂,这对云平台的大数据能力、生态完整性和开放性提出了很高的要求。

关于墨迹天气

北京墨迹风云科技股份有限公司于2010年成立,是一家以“做卓越的天气服务公司”为目标的新兴移动互联网公司,主要开发和运营的“墨迹天气”是一款免费的天气信息查询软件。“墨迹天气”APP目前在全球约有超过5亿人在使用,支持196个国家70多万个城市及地区的天气查询,分钟级、公里级天气预报,实时预报雨雪。提供15天天气预报,5天空气质量预报,实时空气质量及空气质量等级预报,其短时预报功能,可实现未来2小时内,每10分钟一次,预测逐分钟逐公里的天气情况。特殊天气提前发送预警信息,帮助用户更好做出生活决策。在墨迹天气上,每天有超过 5 亿次的天气查询需求和将近20亿次的广告请求,这个数字甚至要大于 Twitter 每天发帖量。墨迹天气已经集成了多语言版本,可根据手机系统语言自动适配,用户覆盖包括中国大陆、港澳台,日韩及东南亚、欧美等全球各地用户。

挑战

墨迹运营团队每天最关心的是用户正在如何使用墨迹,在他们操作中透露了哪些个性化需求。这些数据全部存储在墨迹的API日志中,对这些数据分析,就变成了运营团队每天的最重要的工作。墨迹天气的API每天产生的日志量大约在2TB左右,主要的日志分析场景是天气查询业务和广告业务。
“用户每天产生的日志量大约在2TB。我们需要将这些海量的数据导入云端,然后分天、分小时的展开数据分析作业,分析结果再导入数据库和报表系统,最终展示在运营人员面前。”墨迹天气运维部经理章汉龙介绍,整个过程中数据量庞大,且计算复杂,这对云平台的大数据能力、生态完整性和开放性提出了很高的要求。 之前墨迹使用国外某云计算服务公司的云服务器存储这些数据,利用Hadoop的MapReducer和Hive对数据进行处理分析,但是存在以下问题:
1.成本:包括存储、计算及大数据处理服务成本对比阿里云成本很高。
2.网络带宽:移动端业务量大,需要大量的网络带宽资源支持,但数据上传也需要占用网络带宽,彼此之间相互干扰造成数据传输不稳定。

解决方案及架构

针对上述情况,墨迹将日志分析业务逐步迁移到阿里云大数据平台-数加平台之上。 
新的日志分析架构如页面下方架构图所示。
方案涉及的阿里云数加平台组件有:
阿里云数加-大数据计算服务MaxCompute产品地址https://www.aliyun.com/product/odps
• 大数据开发套件(DataIDE)https://data.aliyun.com/product/ide
• 流计算(StreamCompute,规划中)https://data.aliyun.com/product/sc
• 流式数据发布和订阅(DataHub)
另外,由于每天产生的数据量较大,上传数据会占用带宽,为了不影响业务系统的网络资源,客户开通了阿里云高速通道,用于数据上传。通过此种手段解决了网络带宽的问题。
通过阿里云数加日志分析解决方案,墨迹的业务得到以下提升:
1.充分利用移动端积累下来的海量日志数据。
2.对用户使用情况和广告业务进行大数据分析。
3.利用阿里云数加大数据技术,基于对日志数据的分析,支持运营团队和广告团队优化现有业务。


收益

1.迁移到MaxCompute后,流程上做了优化,省掉了编写MR程序的工作,日志数据全部通过SQL进行分析,工作效率提升了5倍以上。
2.存储方面,MaxCompute的表按列压缩存储,更节省存储空间,整体存储和计算的费用比之前省了70%,性能和稳定性也有很大提升。
3.可以借助MaxCompute上的机器学习算法,对数据进行深度挖掘,为用户提供个性化的服务。
4.阿里云MaxCompute提供更为易用、全面的大数据分析功能。MaxCompute可根据业务情况做到计算资源自动弹性伸缩,天然集成存储功能。通过简单的几项配置操作后,即可完成数据上传,同时实现了多种开源软件的对接。

架构图

TB1hT5EOVXXXXc_apXXXXXXXXXX-940-459.png

140654438e20ad34f9d780ebe629104e32a8d6af

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
20天前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
19天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
19天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
29天前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
3360 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
6月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
742 54
|
11月前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
304 9
|
9月前
|
存储 SQL 关系型数据库
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log、原理、写入过程;binlog与redolog区别、update语句的执行流程、两阶段提交、主从复制、三种日志的使用场景;查询日志、慢查询日志、错误日志等其他几类日志
733 35
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log

相关产品

  • 云原生大数据计算服务 MaxCompute
  • 下一篇