Stay organized with collections Save and categorize content based on your preferences.
The Workflows connector defines the built-in functions that can be used to access other Google Cloud products within a workflow.
This page provides an overview of the individual connector. There is no need to import or load connector libraries in a workflow—connectors work out of the box when used in a call step.
Vertex AI API
Train high-quality custom machine learning models with minimal machine learning expertise and effort. To learn more, see the Vertex AI API documentation.
Cancels a BatchPredictionJob. Starts asynchronous cancellation on the BatchPredictionJob. The server makes the best effort to cancel the job, but success is not guaranteed. Clients can use JobService.GetBatchPredictionJob or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On a successful cancellation, the BatchPredictionJob is not deleted;instead its BatchPredictionJob.state is set to CANCELLED. Any files already outputted by the job are not deleted.
Cancels a CustomJob. Starts asynchronous cancellation on the CustomJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use JobService.GetCustomJob or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the CustomJob is not deleted; instead it becomes a job with a CustomJob.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED, and CustomJob.state is set to CANCELLED.
Perform an online explanation. If deployed_model_id is specified, the corresponding DeployModel must have explanation_spec populated. If deployed_model_id is not specified, all DeployedModels must have explanation_spec populated.
Perform an online prediction with an arbitrary HTTP payload. The response includes the following HTTP headers: * X-Vertex-AI-Endpoint-Id: ID of the Endpoint that served this prediction. * X-Vertex-AI-Deployed-Model-Id: ID of the Endpoint's DeployedModel that served this prediction.
Search the nearest entities under a FeatureView. Search only works for indexable feature view; if a feature view isn't indexable, returns Invalid argument response.
Batch reads Feature values from a Featurestore. This API enables batch reading Feature values, where each read instance in the batch may read Feature values of entities from one or more EntityTypes. Point-in-time correctness is guaranteed for Feature values of each read instance as of each instance's read timestamp.
Sets the access control policy on the specified resource. Replaces any existing policy. Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors.
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Delete Feature values from Featurestore. The progress of the deletion is tracked by the returned operation. The deleted feature values are guaranteed to be invisible to subsequent read operations after the operation is marked as successfully done. If a delete feature values operation fails, the feature values returned from reads and exports may be inconsistent. If consistency is required, the caller must retry the same delete request again and wait till the new operation returned is marked as successfully done.
Imports Feature values into the Featurestore from a source storage. The progress of the import is tracked by the returned operation. The imported features are guaranteed to be visible to subsequent read operations after the operation is marked as successfully done. If an import operation fails, the Feature values returned from reads and exports may be inconsistent. If consistency is required, the caller must retry the same import request again and wait till the new operation returned is marked as successfully done. There are also scenarios where the caller can cause inconsistency. - Source data for import contains multiple distinct Feature values for the same entity ID and timestamp. - Source is modified during an import. This includes adding, updating, or removing source data and/or metadata. Examples of updating metadata include but are not limited to changing storage location, storage class, or retention policy. - Online serving cluster is under-provisioned.
Reads Feature values of a specific entity of an EntityType. For reading feature values of multiple entities of an EntityType, please use StreamingReadFeatureValues.
Sets the access control policy on the specified resource. Replaces any existing policy. Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors.
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Writes Feature values of one or more entities of an EntityType. The Feature values are merged into existing entities if any. The Feature values to be written must have timestamp within the online storage retention.
Cancels a HyperparameterTuningJob. Starts asynchronous cancellation on the HyperparameterTuningJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use JobService.GetHyperparameterTuningJob or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the HyperparameterTuningJob is not deleted; instead it becomes a job with a HyperparameterTuningJob.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED, and HyperparameterTuningJob.state is set to CANCELLED.
Adds a set of Artifacts and Executions to a Context. If any of the Artifacts or Executions have already been added to a Context, they are simply skipped.
Adds a set of Contexts as children to a parent Context. If any of the child Contexts have already been added to the parent Context, they are simply skipped. If this call would create a cycle or cause any Context to have more than 10 parents, the request will fail with an INVALID_ARGUMENT error.
Adds Events to the specified Execution. An Event indicates whether an Artifact was used as an input or output for an Execution. If an Event already exists between the Execution and the Artifact, the Event is skipped.
Obtains the set of input and output Artifacts for this Execution, in the form of LineageSubgraph that also contains the Execution and connecting Events.
Searches all of the resources in automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com that can be migrated to Vertex AI's given location.
Pauses a ModelDeploymentMonitoringJob. If the job is running, the server makes a best effort to cancel the job. Will mark ModelDeploymentMonitoringJob.state to 'PAUSED'.
Copies an already existing Vertex AI Model into the specified Location. The source Model must exist in the same Project. When copying custom Models, the users themselves are responsible for Model.metadata content to be region-agnostic, as well as making sure that any resources (e.g. files) it depends on remain accessible.
Deletes a Model version. Model version can only be deleted if there are no DeployedModels created from it. Deleting the only version in the Model is not allowed. Use DeleteModel for deleting the Model instead.
Exports a trained, exportable Model to a location specified by the user. A Model is considered to be exportable if it has at least one supported export format.
Sets the access control policy on the specified resource. Replaces any existing policy. Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors.
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Cancels a NasJob. Starts asynchronous cancellation on the NasJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use JobService.GetNasJob or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the NasJob is not deleted; instead it becomes a job with a NasJob.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED, and NasJob.state is set to CANCELLED.
Sets the access control policy on the specified resource. Replaces any existing policy. Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors.
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Starts asynchronous cancellation on a long-running operation. The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns google.rpc.Code.UNIMPLEMENTED. Clients can use Operations.GetOperation or other methods to check whether the cancellation succeeded or whether the operation completed despite cancellation. On successful cancellation, the operation is not deleted; instead, it becomes an operation with an Operation.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED.
Deletes a long-running operation. This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns google.rpc.Code.UNIMPLEMENTED.
Gets the latest state of a long-running operation. Clients can use this method to poll the operation result at intervals as recommended by the API service.
Waits until the specified long-running operation is done or reaches at most a specified timeout, returning the latest state. If the operation is already done, the latest state is immediately returned. If the timeout specified is greater than the default HTTP/RPC timeout, the HTTP/RPC timeout is used. If the server does not support this method, it returns google.rpc.Code.UNIMPLEMENTED. Note that this method is on a best-effort basis. It may return the latest state before the specified timeout (including immediately), meaning even an immediate response is no guarantee that the operation is done.
Batch cancel PipelineJobs. Firstly the server will check if all the jobs are in non-terminal states, and skip the jobs that are already terminated. If the operation failed, none of the pipeline jobs are cancelled. The server will poll the states of all the pipeline jobs periodically to check the cancellation status. This operation will return an LRO.
Batch deletes PipelineJobs The Operation is atomic. If it fails, none of the PipelineJobs are deleted. If it succeeds, all of the PipelineJobs are deleted.
Cancels a PipelineJob. Starts asynchronous cancellation on the PipelineJob. The server makes a best effort to cancel the pipeline, but success is not guaranteed. Clients can use PipelineService.GetPipelineJob or other methods to check whether the cancellation succeeded or whether the pipeline completed despite cancellation. On successful cancellation, the PipelineJob is not deleted; instead it becomes a pipeline with a PipelineJob.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED, and PipelineJob.state is set to CANCELLED.
Perform an online prediction with an arbitrary HTTP payload. The response includes the following HTTP headers: * X-Vertex-AI-Endpoint-Id: ID of the Endpoint that served this prediction. * X-Vertex-AI-Deployed-Model-Id: ID of the Endpoint's DeployedModel that served this prediction.
Updates an active or paused Schedule. When the Schedule is updated, new runs will be scheduled starting from the updated next execution time after the update time based on the time_specification in the updated Schedule. All unstarted runs before the update time will be skipped while already created runs will NOT be paused or canceled.
Pauses a Schedule. Will mark Schedule.state to 'PAUSED'. If the schedule is paused, no new runs will be created. Already created runs will NOT be paused or canceled.
Resumes a paused Schedule to start scheduling new runs. Will mark Schedule.state to 'ACTIVE'. Only paused Schedule can be resumed. When the Schedule is resumed, new runs will be scheduled starting from the next execution time after the current time based on the time_specification in the Schedule. If Schedule.catchUp is set up true, all missed runs will be scheduled for backfill first.
Checks whether a Trial should stop or not. Returns a long-running operation. When the operation is successful, it will contain a CheckTrialEarlyStoppingStateResponse.
Lists the pareto-optimal Trials for multi-objective Study or the optimal Trials for single-objective Study. The definition of pareto-optimal can be checked in wiki page. https://en.wikipedia.org/wiki/Pareto_efficiency
Adds one or more Trials to a Study, with parameter values suggested by Vertex AI Vizier. Returns a long-running operation associated with the generation of Trial suggestions. When this long-running operation succeeds, it will contain a SuggestTrialsResponse.
Reads multiple TensorboardTimeSeries' data. The data point number limit is 1000 for scalars, 100 for tensors and blob references. If the number of data points stored is less than the limit, all data is returned. Otherwise, the number limit of data points is randomly selected from this time series and returned.
Reads a TensorboardTimeSeries' data. By default, if the number of data points stored is less than 1000, all data is returned. Otherwise, 1000 data points is randomly selected from this time series and returned. This value can be changed by changing max_data_points, which can't be greater than 10k.
Gets bytes of TensorboardBlobs. This is to allow reading blob data stored in consumer project's Cloud Storage bucket without users having to obtain Cloud Storage access permission.
Cancels a TrainingPipeline. Starts asynchronous cancellation on the TrainingPipeline. The server makes a best effort to cancel the pipeline, but success is not guaranteed. Clients can use PipelineService.GetTrainingPipeline or other methods to check whether the cancellation succeeded or whether the pipeline completed despite cancellation. On successful cancellation, the TrainingPipeline is not deleted; instead it becomes a pipeline with a TrainingPipeline.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED, and TrainingPipeline.state is set to CANCELLED.
Cancels a TuningJob. Starts asynchronous cancellation on the TuningJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use GenAiTuningService.GetTuningJob or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the TuningJob is not deleted; instead it becomes a job with a TuningJob.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED, and TuningJob.state is set to CANCELLED.
Cancels a BatchPredictionJob. Starts asynchronous cancellation on the BatchPredictionJob. The server makes the best effort to cancel the job, but success is not guaranteed. Clients can use JobService.GetBatchPredictionJob or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On a successful cancellation, the BatchPredictionJob is not deleted;instead its BatchPredictionJob.state is set to CANCELLED. Any files already outputted by the job are not deleted.
Cancels a CustomJob. Starts asynchronous cancellation on the CustomJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use JobService.GetCustomJob or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the CustomJob is not deleted; instead it becomes a job with a CustomJob.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED, and CustomJob.state is set to CANCELLED.
Perform an online explanation. If deployed_model_id is specified, the corresponding DeployModel must have explanation_spec populated. If deployed_model_id is not specified, all DeployedModels must have explanation_spec populated.
Perform an online prediction with an arbitrary HTTP payload. The response includes the following HTTP headers: * X-Vertex-AI-Endpoint-Id: ID of the Endpoint that served this prediction. * X-Vertex-AI-Deployed-Model-Id: ID of the Endpoint's DeployedModel that served this prediction.
Sets the access control policy on the specified resource. Replaces any existing policy. Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors.
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Sets the access control policy on the specified resource. Replaces any existing policy. Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors.
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Search the nearest entities under a FeatureView. Search only works for indexable feature view; if a feature view isn't indexable, returns Invalid argument response.
Sets the access control policy on the specified resource. Replaces any existing policy. Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors.
Bidirectional streaming RPC to fetch feature values under a FeatureView. Requests may not have a one-to-one mapping to responses and responses may be returned out-of-order to reduce latency.
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Batch reads Feature values from a Featurestore. This API enables batch reading Feature values, where each read instance in the batch may read Feature values of entities from one or more EntityTypes. Point-in-time correctness is guaranteed for Feature values of each read instance as of each instance's read timestamp.
Sets the access control policy on the specified resource. Replaces any existing policy. Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors.
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Delete Feature values from Featurestore. The progress of the deletion is tracked by the returned operation. The deleted feature values are guaranteed to be invisible to subsequent read operations after the operation is marked as successfully done. If a delete feature values operation fails, the feature values returned from reads and exports may be inconsistent. If consistency is required, the caller must retry the same delete request again and wait till the new operation returned is marked as successfully done.
Imports Feature values into the Featurestore from a source storage. The progress of the import is tracked by the returned operation. The imported features are guaranteed to be visible to subsequent read operations after the operation is marked as successfully done. If an import operation fails, the Feature values returned from reads and exports may be inconsistent. If consistency is required, the caller must retry the same import request again and wait till the new operation returned is marked as successfully done. There are also scenarios where the caller can cause inconsistency. - Source data for import contains multiple distinct Feature values for the same entity ID and timestamp. - Source is modified during an import. This includes adding, updating, or removing source data and/or metadata. Examples of updating metadata include but are not limited to changing storage location, storage class, or retention policy. - Online serving cluster is under-provisioned.
Reads Feature values of a specific entity of an EntityType. For reading feature values of multiple entities of an EntityType, please use StreamingReadFeatureValues.
Sets the access control policy on the specified resource. Replaces any existing policy. Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors.
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Writes Feature values of one or more entities of an EntityType. The Feature values are merged into existing entities if any. The Feature values to be written must have timestamp within the online storage retention.
Cancels a HyperparameterTuningJob. Starts asynchronous cancellation on the HyperparameterTuningJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use JobService.GetHyperparameterTuningJob or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the HyperparameterTuningJob is not deleted; instead it becomes a job with a HyperparameterTuningJob.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED, and HyperparameterTuningJob.state is set to CANCELLED.
Adds a set of Artifacts and Executions to a Context. If any of the Artifacts or Executions have already been added to a Context, they are simply skipped.
Adds a set of Contexts as children to a parent Context. If any of the child Contexts have already been added to the parent Context, they are simply skipped. If this call would create a cycle or cause any Context to have more than 10 parents, the request will fail with an INVALID_ARGUMENT error.
Adds Events to the specified Execution. An Event indicates whether an Artifact was used as an input or output for an Execution. If an Event already exists between the Execution and the Artifact, the Event is skipped.
Obtains the set of input and output Artifacts for this Execution, in the form of LineageSubgraph that also contains the Execution and connecting Events.
Searches all of the resources in automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com that can be migrated to Vertex AI's given location.
Pauses a ModelDeploymentMonitoringJob. If the job is running, the server makes a best effort to cancel the job. Will mark ModelDeploymentMonitoringJob.state to 'PAUSED'.
Lists ModelMonitoringJobs. Callers may choose to read across multiple Monitors as per AIP-159 by using '-' (the hyphen or dash character) as a wildcard character instead of modelMonitor id in the parent. Format projects/{project_id}/locations/{location}/moodelMonitors/-/modelMonitoringJobs
Copies an already existing Vertex AI Model into the specified Location. The source Model must exist in the same Project. When copying custom Models, the users themselves are responsible for Model.metadata content to be region-agnostic, as well as making sure that any resources (e.g. files) it depends on remain accessible.
Deletes a Model version. Model version can only be deleted if there are no DeployedModels created from it. Deleting the only version in the Model is not allowed. Use DeleteModel for deleting the Model instead.
Exports a trained, exportable Model to a location specified by the user. A Model is considered to be exportable if it has at least one supported export format.
Sets the access control policy on the specified resource. Replaces any existing policy. Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors.
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Sets the access control policy on the specified resource. Replaces any existing policy. Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors.
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Starts asynchronous cancellation on a long-running operation. The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns google.rpc.Code.UNIMPLEMENTED. Clients can use Operations.GetOperation or other methods to check whether the cancellation succeeded or whether the operation completed despite cancellation. On successful cancellation, the operation is not deleted; instead, it becomes an operation with an Operation.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED.
Deletes a long-running operation. This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns google.rpc.Code.UNIMPLEMENTED.
Gets the latest state of a long-running operation. Clients can use this method to poll the operation result at intervals as recommended by the API service.
Waits until the specified long-running operation is done or reaches at most a specified timeout, returning the latest state. If the operation is already done, the latest state is immediately returned. If the timeout specified is greater than the default HTTP/RPC timeout, the HTTP/RPC timeout is used. If the server does not support this method, it returns google.rpc.Code.UNIMPLEMENTED. Note that this method is on a best-effort basis. It may return the latest state before the specified timeout (including immediately), meaning even an immediate response is no guarantee that the operation is done.
Batch cancel PipelineJobs. Firstly the server will check if all the jobs are in non-terminal states, and skip the jobs that are already terminated. If the operation failed, none of the pipeline jobs are cancelled. The server will poll the states of all the pipeline jobs periodically to check the cancellation status. This operation will return an LRO.
Batch deletes PipelineJobs The Operation is atomic. If it fails, none of the PipelineJobs are deleted. If it succeeds, all of the PipelineJobs are deleted.
Cancels a PipelineJob. Starts asynchronous cancellation on the PipelineJob. The server makes a best effort to cancel the pipeline, but success is not guaranteed. Clients can use PipelineService.GetPipelineJob or other methods to check whether the cancellation succeeded or whether the pipeline completed despite cancellation. On successful cancellation, the PipelineJob is not deleted; instead it becomes a pipeline with a PipelineJob.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED, and PipelineJob.state is set to CANCELLED.
Perform an online prediction with an arbitrary HTTP payload. The response includes the following HTTP headers: * X-Vertex-AI-Endpoint-Id: ID of the Endpoint that served this prediction. * X-Vertex-AI-Deployed-Model-Id: ID of the Endpoint's DeployedModel that served this prediction.
Updates an active or paused Schedule. When the Schedule is updated, new runs will be scheduled starting from the updated next execution time after the update time based on the time_specification in the updated Schedule. All unstarted runs before the update time will be skipped while already created runs will NOT be paused or canceled.
Pauses a Schedule. Will mark Schedule.state to 'PAUSED'. If the schedule is paused, no new runs will be created. Already created runs will NOT be paused or canceled.
Resumes a paused Schedule to start scheduling new runs. Will mark Schedule.state to 'ACTIVE'. Only paused Schedule can be resumed. When the Schedule is resumed, new runs will be scheduled starting from the next execution time after the current time based on the time_specification in the Schedule. If Schedule.catchUp is set up true, all missed runs will be scheduled for backfill first.
Checks whether a Trial should stop or not. Returns a long-running operation. When the operation is successful, it will contain a CheckTrialEarlyStoppingStateResponse.
Lists the pareto-optimal Trials for multi-objective Study or the optimal Trials for single-objective Study. The definition of pareto-optimal can be checked in wiki page. https://en.wikipedia.org/wiki/Pareto_efficiency
Adds one or more Trials to a Study, with parameter values suggested by Vertex AI Vizier. Returns a long-running operation associated with the generation of Trial suggestions. When this long-running operation succeeds, it will contain a SuggestTrialsResponse.
Reads multiple TensorboardTimeSeries' data. The data point number limit is 1000 for scalars, 100 for tensors and blob references. If the number of data points stored is less than the limit, all data is returned. Otherwise, the number limit of data points is randomly selected from this time series and returned.
Reads a TensorboardTimeSeries' data. By default, if the number of data points stored is less than 1000, all data is returned. Otherwise, 1000 data points is randomly selected from this time series and returned. This value can be changed by changing max_data_points, which can't be greater than 10k.
Gets bytes of TensorboardBlobs. This is to allow reading blob data stored in consumer project's Cloud Storage bucket without users having to obtain Cloud Storage access permission.
Cancels a TrainingPipeline. Starts asynchronous cancellation on the TrainingPipeline. The server makes a best effort to cancel the pipeline, but success is not guaranteed. Clients can use PipelineService.GetTrainingPipeline or other methods to check whether the cancellation succeeded or whether the pipeline completed despite cancellation. On successful cancellation, the TrainingPipeline is not deleted; instead it becomes a pipeline with a TrainingPipeline.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED, and TrainingPipeline.state is set to CANCELLED.
Cancels a TuningJob. Starts asynchronous cancellation on the TuningJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use GenAiTuningService.GetTuningJob or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the TuningJob is not deleted; instead it becomes a job with a TuningJob.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED, and TuningJob.state is set to CANCELLED.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-10-02 UTC."],[],[]]