Summary of entries of Methods for langchain-google-bigtable.
langchain_google_bigtable.chat_message_history.init_chat_history_table
init_chat_history_table( instance_id: str, table_id: str, client: typing.Optional[google.cloud.bigtable.client.Client] = None, ) -> NoneCreate a table to store chat history.
See more: langchain_google_bigtable.chat_message_history.init_chat_history_table
langchain_google_bigtable.key_value_store.init_key_value_store_table
init_key_value_store_table( instance_id: str, table_id: str, project_id: typing.Optional[str] = None, client: typing.Optional[google.cloud.bigtable.client.Client] = None, column_families: typing.List[str] = ["kv"], ) -> NoneCreate a table for saving of LangChain Key-value pairs.
See more: langchain_google_bigtable.key_value_store.init_key_value_store_table
langchain_google_bigtable.loader.init_document_table
init_document_table( instance_id: str, table_id: str, client: typing.Optional[google.cloud.bigtable.client.Client] = None, content_column_family: str = "langchain", metadata_mappings: typing.List[ langchain_google_bigtable.loader.MetadataMapping ] = [], metadata_as_json_column_family: typing.Optional[str] = None, ) -> NoneCreate a table for saving of langchain documents.
See more: langchain_google_bigtable.loader.init_document_table
langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.add_message
add_message(message: langchain_core.messages.base.BaseMessage) -> NoneWrite a message to the table.
See more: langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.add_message
langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.add_messages
add_messages( messages: typing.Sequence[langchain_core.messages.base.BaseMessage], ) -> NoneWrite messages to the table.
See more: langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.add_messages
langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.clear
clear() -> NoneClear session memory from DB.
See more: langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.clear
langchain_google_bigtable.engine.BigtableEngine
BigtableEngine( key: object, client: typing.Optional[ google.cloud.bigtable.data._async.client.BigtableDataClientAsync ], loop: typing.Optional[asyncio.events.AbstractEventLoop], thread: typing.Optional[threading.Thread], )Initializes the engine with a running event loop and a client.
langchain_google_bigtable.engine.BigtableEngine.__start_background_loop
__start_background_loop( project_id: typing.Optional[str], credentials: typing.Optional[google.auth.credentials.Credentials] = None, client_options: typing.Optional[typing.Any] = None, **kwargs: typing.Any ) -> concurrent.futures._base.FutureCreates and starts the default background loop and thread.
See more: langchain_google_bigtable.engine.BigtableEngine.__start_background_loop
langchain_google_bigtable.engine.BigtableEngine._create
_create( project_id: typing.Optional[str] = None, loop: typing.Optional[asyncio.events.AbstractEventLoop] = None, thread: typing.Optional[threading.Thread] = None, client: typing.Optional[ google.cloud.bigtable.data._async.client.BigtableDataClientAsync ] = None, credentials: typing.Optional[google.auth.credentials.Credentials] = None, client_options: typing.Optional[typing.Any] = None, **kwargs: typing.Any ) -> langchain_google_bigtable.engine.BigtableEngineAsynchronously instantiates the BigtableEngine Object.
See more: langchain_google_bigtable.engine.BigtableEngine._create
langchain_google_bigtable.engine.BigtableEngine._run_as_async
_run_as_async(coro: typing.Any) -> typing.AnyRuns a coroutine on the background loop without blocking the main loop.
See more: langchain_google_bigtable.engine.BigtableEngine._run_as_async
langchain_google_bigtable.engine.BigtableEngine._run_as_sync
_run_as_sync(coro: typing.Any) -> typing.AnyRuns a coroutine on the background loop and waits for the result.
See more: langchain_google_bigtable.engine.BigtableEngine._run_as_sync
langchain_google_bigtable.engine.BigtableEngine.async_initialize
async_initialize( project_id: typing.Optional[str] = None, credentials: typing.Optional[google.auth.credentials.Credentials] = None, client_options: typing.Optional[typing.Any] = None, **kwargs: typing.Any ) -> langchain_google_bigtable.engine.BigtableEngineCreates a BigtableEngine instance with a background event loop and a new data client asynchronously .
See more: langchain_google_bigtable.engine.BigtableEngine.async_initialize
langchain_google_bigtable.engine.BigtableEngine.close
close() -> NoneCloses the underlying client for this specific engine instance.
See more: langchain_google_bigtable.engine.BigtableEngine.close
langchain_google_bigtable.engine.BigtableEngine.get_async_table
get_async_table( instance_id: str, table_id: str, app_profile_id: typing.Optional[str] = None, **kwargs: typing.Any ) -> google.cloud.bigtable.data._async.client.TableAsyncReturns the table using this class's client.
See more: langchain_google_bigtable.engine.BigtableEngine.get_async_table
langchain_google_bigtable.engine.BigtableEngine.initialize
initialize( project_id: typing.Optional[str] = None, credentials: typing.Optional[google.auth.credentials.Credentials] = None, client_options: typing.Optional[typing.Any] = None, **kwargs: typing.Any ) -> langchain_google_bigtable.engine.BigtableEngineCreates a BigtableEngine instance with a background event loop and a new data client synchronously.
See more: langchain_google_bigtable.engine.BigtableEngine.initialize
langchain_google_bigtable.engine.BigtableEngine.shutdown_default_loop
shutdown_default_loop() -> NoneCloses the default class-level shared loop and terminates the thread associated with it.
See more: langchain_google_bigtable.engine.BigtableEngine.shutdown_default_loop
langchain_google_bigtable.key_value_store.BigtableByteStore._get_async_store
_get_async_store( **kwargs: typing.Any, ) -> langchain_google_bigtable.async_key_value_store.AsyncBigtableByteStoreReturns a AsyncBigtableByteStore object to be used for data operations.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore._get_async_store
langchain_google_bigtable.key_value_store.BigtableByteStore.amdelete
amdelete(keys: typing.Sequence[str]) -> NoneAsynchronously deletes key-value pairs from the Bigtable.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.amdelete
langchain_google_bigtable.key_value_store.BigtableByteStore.amget
amget(keys: typing.Sequence[str]) -> typing.List[typing.Optional[bytes]]Asynchronously retrieves values for a sequence of keys.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.amget
langchain_google_bigtable.key_value_store.BigtableByteStore.amset
amset(key_value_pairs: typing.Sequence[typing.Tuple[str, bytes]]) -> NoneAsynchronously stores key-value pairs in the Bigtable.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.amset
langchain_google_bigtable.key_value_store.BigtableByteStore.ayield_keys
ayield_keys(*, prefix: typing.Optional[str] = None) -> typing.AsyncIterator[str]Asynchronously yields keys matching a given prefix.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.ayield_keys
langchain_google_bigtable.key_value_store.BigtableByteStore.create
create( instance_id: str, table_id: str, *, engine: typing.Optional[langchain_google_bigtable.engine.BigtableEngine] = None, project_id: typing.Optional[str] = None, app_profile_id: typing.Optional[str] = None, column_family: str = "kv", column_qualifier: typing.Union[str, bytes] = b"val", credentials: typing.Optional[google.auth.credentials.Credentials] = None, client_options: typing.Optional[typing.Dict[str, typing.Any]] = None, **kwargs: typing.Any ) -> langchain_google_bigtable.key_value_store.BigtableByteStoreCreates an async-initialized instance of the BigtableByteStore.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.create
langchain_google_bigtable.key_value_store.BigtableByteStore.create_sync
create_sync( instance_id: str, table_id: str, *, engine: typing.Optional[langchain_google_bigtable.engine.BigtableEngine] = None, project_id: typing.Optional[str] = None, app_profile_id: typing.Optional[str] = None, column_family: str = "kv", column_qualifier: typing.Union[str, bytes] = b"val", credentials: typing.Optional[google.auth.credentials.Credentials] = None, client_options: typing.Optional[typing.Dict[str, typing.Any]] = None, **kwargs: typing.Any ) -> langchain_google_bigtable.key_value_store.BigtableByteStoreCreates a sync-initialized instance of the BigtableByteStore.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.create_sync
langchain_google_bigtable.key_value_store.BigtableByteStore.get_engine
get_engine() -> langchain_google_bigtable.engine.BigtableEngineReturns the BigtableEngine being used for this object.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.get_engine
langchain_google_bigtable.key_value_store.BigtableByteStore.mdelete
mdelete(keys: typing.Sequence[str]) -> NoneSynchronously deletes key-value pairs from the Bigtable.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.mdelete
langchain_google_bigtable.key_value_store.BigtableByteStore.mget
mget(keys: typing.Sequence[str]) -> typing.List[typing.Optional[bytes]]Synchronously retrieves values for a sequence of keys.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.mget
langchain_google_bigtable.key_value_store.BigtableByteStore.mset
mset(key_value_pairs: typing.Sequence[typing.Tuple[str, bytes]]) -> NoneSynchronously stores key-value pairs in the Bigtable.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.mset
langchain_google_bigtable.key_value_store.BigtableByteStore.yield_keys
yield_keys(*, prefix: typing.Optional[str] = None) -> typing.Iterator[str]Synchronously yields keys matching a given prefix.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.yield_keys
langchain_google_bigtable.loader.BigtableLoader
BigtableLoader( instance_id: str, table_id: str, row_set: typing.Optional[google.cloud.bigtable.row_set.RowSet] = None, filter: typing.Optional[google.cloud.bigtable.row_filters.RowFilter] = None, client: typing.Optional[google.cloud.bigtable.client.Client] = None, content_encoding: langchain_google_bigtable.loader.Encoding = Encoding.UTF8, content_column_family: str = "langchain", content_column_name: str = "content", metadata_mappings: typing.List[ langchain_google_bigtable.loader.MetadataMapping ] = [], metadata_as_json_column_family: typing.Optional[str] = None, metadata_as_json_column_name: typing.Optional[str] = None, metadata_as_json_encoding: langchain_google_bigtable.loader.Encoding = Encoding.UTF8, )Initialize Bigtable document loader.
langchain_google_bigtable.loader.BigtableLoader.lazy_load
lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]A lazy loader for Documents.
See more: langchain_google_bigtable.loader.BigtableLoader.lazy_load
langchain_google_bigtable.loader.BigtableLoader.load
load() -> typing.List[langchain_core.documents.base.Document]Load data into Document objects.
See more: langchain_google_bigtable.loader.BigtableLoader.load
langchain_google_bigtable.loader.BigtableSaver
BigtableSaver( instance_id: str, table_id: str, client: typing.Optional[google.cloud.bigtable.client.Client] = None, content_encoding: langchain_google_bigtable.loader.Encoding = Encoding.UTF8, content_column_family: str = "langchain", content_column_name: str = "content", metadata_mappings: typing.List[ langchain_google_bigtable.loader.MetadataMapping ] = [], metadata_as_json_column_family: typing.Optional[str] = None, metadata_as_json_column_name: typing.Optional[str] = None, metadata_as_json_encoding: langchain_google_bigtable.loader.Encoding = Encoding.UTF8, )Initialize Bigtable document saver.
langchain_google_bigtable.loader.BigtableSaver.add_documents
add_documents(docs: typing.List[langchain_core.documents.base.Document]) -> NoneSave documents in the DocumentSaver table.
See more: langchain_google_bigtable.loader.BigtableSaver.add_documents
langchain_google_bigtable.loader.BigtableSaver.delete
delete(docs: typing.List[langchain_core.documents.base.Document]) -> NoneDelete all instances of a document from the DocumentSaver table by matching the entire Document object.
See more: langchain_google_bigtable.loader.BigtableSaver.delete