- Notifications
You must be signed in to change notification settings - Fork 5.4k
KO: add site/ko/guide/tensor.md #1070
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
| Reviewers added, please take a look. When your review is finished, approve the pull request or include "LGTM" in your comment. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for your nice translation. It's pretty nice translation. 👍
I checked some typo and some of removable original word.
| @JKIsaacLee, please check my current revision for your review. |
| Hi @wckim, I'll check this PR asap. :) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thank you @wckim , I'm late.
I continue to review ASAP.
Please check my comments. 👍
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@wckim , I'll continue to review this PR later.
Please check my suggestions.
Thank you so much! :)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@wckim, Thank you for the translation. 👍
I finished to review. But I'm not sure tf.Print is suitable in this documetation. :)
site/ko/guide/tensor.md Outdated
| 일단 계산 그래프를 만들었다면, 특정 `tf.Tensor`를 생성하고 그것에 지정된 값을 가져오는 계산을 실행할 수 있습니다. | ||
| 이것은 대부분의 텐서플로가 작업하는데 필요할 뿐 아니라 디버깅에 종종 유용합니다. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
To read easily I suggest '생성하고 그것에 지정된 값을' --> '생성하거나 텐서에 할당된 값을',
'대부분의 텐서플로가 작업하는데' --> '텐서플로 작업의 많은 부분에서'
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks, fixed it
site/ko/guide/tensor.md Outdated
| 때때로 그 값이 이용할 수 없는 동적인 정보에 의존하기 때문에 | ||
| 컨텍스트(context)가 없는 `tf.Tensor`는 계산할 수 없는 경우가 있습니다. | ||
| 예를 들어, `placeholder`인 텐서는 그 `placeholder`에 해당하는 값이 제공되지 않으면 계산할 수 없습니다. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I suggest '그 값이 이용할 수 없는' --> '현재 사용할 수 없는' and 'placeholder인 텐서는 ' --> 'placeholder에 의존하는 텐서는'
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks, fixed it
site/ko/guide/tensor.md Outdated
| 다른 모델 구조는 `tf.Tensor`를 계산하는 것을 복잡하게 만들 수 있습니다. | ||
| 텐서플로는 함수안이나 제어 흐름안에 정의된 `tf.Tensor`를 직접 계산할 수 없습니다. | ||
| 만약에 `tf.Tensor`가 큐(queue)에 있는 값을 사용한다면, | ||
| 무언가가 큐에 들어간 후에 만 `tf.Tensor` 계산을 할 수 있습니다; 그렇지 않으면 계산은 중단될 것입니다. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hang menas blocking the computation. I suggest ''; 그렇지 않으면 계산은 중단될 것입니다' --> ''. 그렇지 않으면 계산은 멈출(hang) 것입니다'
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks, fixed it.
site/ko/guide/tensor.md Outdated
| ## 텐서 출력하기 | ||
| | ||
| 디버깅을 위해서 `tf.Tensor` 값을 출력하고 싶을 것입니다. | ||
| 고급 디버깅에 대해 [tfdbg](../guide/debugger.md)에서 가이드를 제공하지만, | ||
| 텐서플로는 `tf.Tensor`값을 직접 출력할 수 있는 연산자를 가지고 있습니다. | ||
| | ||
| `tf.Tensor`를 출력할 때 다음과 같은 패턴을 쓰고자 하는 경우는 거의 없습니다: | ||
| | ||
| ``` python | ||
| t = <<some tensorflow operation>> | ||
| print(t) # 이것은 그래프가 생성되어질 때 기호화된 텐서(symbolic tensor)를 출력할 것입니다. | ||
| # 이 텐서는 이 컨텍스트(context)안에서 값을 가지고 있지 않습니다. | ||
| ``` | ||
| | ||
| 이 코드는 `tf.Tensor`의 값이 아닌 객체(지연 계산으로 표현)를 출력합니다. | ||
| 실제로 텐서플로는 두번째 인수로 전달된 `tf.Tensor` 집합을 출력하는 동안 | ||
| 변경되지 않는 첫번째 텐서 인수를 반환하는 `tf.Print` 연산을 제공합니다. | ||
| | ||
| `tf.Print`을 제대로 사용하기 위해서는 반환된 값을 사용해야 합니다. 아래 예를 보면 | ||
| | ||
| ``` python | ||
| t = <<some tensorflow operation>> | ||
| tf.Print(t, [t]) # 어떤 일도 하지 않습니다 | ||
| t = tf.Print(t, [t]) # 여기서 tf.Print에 의해 반환된 값을 사용할 수 있습니다. | ||
| result = t + 1 # 이제 결과를 계산할 때 `t` 값이 출력될 것입니다. | ||
| ``` | ||
| | ||
| `result`를 계산할 때 이와 관련된 모든 것이 계산될 것입니다. | ||
| `result`는 `t`와 의존성이 있고, `t`를 계산하는 것이 그 입력(`t`의 이전 값)을 출력하는 부가 효과가 있기 때문에 `t`는 출력됩니다. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
tf.Print is deprecated in TF 1.5 and not included in TF 2.
I suggest to remove this section.
@lamberta , What do you think about this section? :)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
If it is important to keep consistency with the original document(en), it is better not to change.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, just waiting @lamberta's comment. :)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@wckim, I talked on this issue with Billy.
Please remove this section.
I'll make a pr to english version. :)
Thanks
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks, removed this section.
| @wckim, Great work. 👍 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Pretty nice 👍 LGTM
added guide doc is korean translation of site/en/guide/tensor.md