Skip to content

fermga/TNFR-Python-Engine

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TNFR Python Engine

Model reality as coherent resonance, not isolated objects

PyPI Python License Documentation

TNFR (Resonant Fractal Nature Theory) is a physics-grounded computational paradigm: reality is modeled as coherent patterns that persist through resonance. Structures reorganize according to the nodal equation (∂EPI/∂t = νf · ΔNFR) under canonical grammar constraints (U1–U6) and invariants.


Quick Install

pip install tnfr

Optional GPU / extras: see Getting Started.

Minimal Example

from tnfr.sdk import TNFRNetwork net = TNFRNetwork("hello") summary = (net.add_nodes(8) .connect_nodes(0.35, "random") .apply_sequence("basic_activation", repeat=2) .measure().summary()) print(summary)

Primary Documentation Hubs

📚 DOCUMENTATION_INDEX.md - Complete documentation map and navigation guide

📖 CANONICAL_SOURCES.md - Documentation hierarchy (which source is authoritative for what)

Quick Navigation

  • Getting Started: docs/source/getting-started/README.md - Tutorials & first steps
  • Learning Paths: docs/source/getting-started/LEARNING_PATHS.md - Guided learning sequences
  • Grammar System: docs/grammar/README.md - U1-U6 constraints hub
  • Glossary: GLOSSARY.md - Canonical term definitions
  • AI Agent Guide: AGENTS.md - Invariants & philosophy
  • Architecture: ARCHITECTURE.md - System design patterns
  • Contributing: CONTRIBUTING.md | Tests: TESTING.md

Core References

Extended examples: examples/ (multi-scale, regenerative, performance)
CLI & profiling: docs/source/tools/CLI.md


Key Principles (Snapshot)

  • Coherence over objects (EPI evolves only via operators)
  • Bounded reorganization (U2 integral convergence, U6 Φ_s confinement)
  • Phase-verified coupling (U3)
  • Operational fractality (REMESH / multi-scale coherence U5)
  • Reproducibility (seeded trajectories, Invariant #8)

Citation & License

MIT License – see LICENSE.md. Please cite: fermga/TNFR-Python-Engine and theoretical sources (TNFR.pdf, Mathematical Foundations).


Useful Links


Reality is not made of things—it's made of resonance.