Python driver for ArangoDB, a scalable multi-model database natively supporting documents, graphs and search.
This is the asyncio alternative of the python-arango driver.
Check out a demo app at python-arango-async-demo.
- ArangoDB version 3.11+
- Python version 3.10+
pip install python-arango-async --upgrade
Here is a simple usage example:
from arangoasync import ArangoClient from arangoasync.auth import Auth async def main(): # Initialize the client for ArangoDB. async with ArangoClient(hosts="http://localhost:8529") as client: auth = Auth(username="root", password="passwd") # Connect to "_system" database as root user. sys_db = await client.db("_system", auth=auth) # Create a new database named "test". await sys_db.create_database("test") # Connect to "test" database as root user. db = await client.db("test", auth=auth) # Create a new collection named "students". students = await db.create_collection("students") # Add a persistent index to the collection. await students.add_index(type="persistent", fields=["name"], options={"unique": True}) # Insert new documents into the collection. await students.insert({"name": "jane", "age": 39}) await students.insert({"name": "josh", "age": 18}) await students.insert({"name": "judy", "age": 21}) # Execute an AQL query and iterate through the result cursor. cursor = await db.aql.execute("FOR doc IN students RETURN doc") async with cursor: student_names = [] async for doc in cursor: student_names.append(doc["name"])
Another example with graphs:
async def main(): from arangoasync import ArangoClient from arangoasync.auth import Auth # Initialize the client for ArangoDB. async with ArangoClient(hosts="http://localhost:8529") as client: auth = Auth(username="root", password="passwd") # Connect to "test" database as root user. db = await client.db("test", auth=auth) # Get the API wrapper for graph "school". if await db.has_graph("school"): graph = db.graph("school") else: graph = await db.create_graph("school") # Create vertex collections for the graph. students = await graph.create_vertex_collection("students") lectures = await graph.create_vertex_collection("lectures") # Create an edge definition (relation) for the graph. edges = await graph.create_edge_definition( edge_collection="register", from_vertex_collections=["students"], to_vertex_collections=["lectures"] ) # Insert vertex documents into "students" (from) vertex collection. await students.insert({"_key": "01", "full_name": "Anna Smith"}) await students.insert({"_key": "02", "full_name": "Jake Clark"}) await students.insert({"_key": "03", "full_name": "Lisa Jones"}) # Insert vertex documents into "lectures" (to) vertex collection. await lectures.insert({"_key": "MAT101", "title": "Calculus"}) await lectures.insert({"_key": "STA101", "title": "Statistics"}) await lectures.insert({"_key": "CSC101", "title": "Algorithms"}) # Insert edge documents into "register" edge collection. await edges.insert({"_from": "students/01", "_to": "lectures/MAT101"}) await edges.insert({"_from": "students/01", "_to": "lectures/STA101"}) await edges.insert({"_from": "students/01", "_to": "lectures/CSC101"}) await edges.insert({"_from": "students/02", "_to": "lectures/MAT101"}) await edges.insert({"_from": "students/02", "_to": "lectures/STA101"}) await edges.insert({"_from": "students/03", "_to": "lectures/CSC101"}) # Traverse the graph in outbound direction, breath-first. query = """ FOR v, e, p IN 1..3 OUTBOUND 'students/01' GRAPH 'school' OPTIONS { bfs: true, uniqueVertices: 'global' } RETURN {vertex: v, edge: e, path: p} """ async with await db.aql.execute(query) as cursor: async for doc in cursor: print(doc)
Please see the documentation for more details.