Skip to content

aliyun/surftrace

Repository files navigation

mascot.png

1、简介

​ surftrace是一个ftrace的自动封装器和开发编译平台,既能让用户基于libbpf快速构建工程进行开发,也能作为ftrace的封装器进行trace命令编写。项目包含surftrace工具集和pylcc、glcc(python or generic C language for libbpf Compiler Collection),提供远程和本地eBPF的编译能力。

surftrace.png

1.1、ftrace原理与不足

​ ftrace是一个内核中的追踪器,用于帮助系统开发者或设计者查看内核运行情况,它可以被用来调试或者分析延迟/性能等常见问题。早期 ftrace 是一个 function tracer,仅能够记录内核的函数调用流程。如今ftrace已经成为一个开发框架,从2.6内核开始引入,是一套公认安全、可靠、高效的内核数据获取方式。

​ ftrace对使用者的要求比较高,以对内核符号 wake_up_new_task 进行trace,同时要获取入参(struct task_struct *)->comm 成员信息为例,启动配置需要经历三个步骤:

echo 'p:f0 wake_up_new_task comm=+0x678(%di):string' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on

​ 要想停止需要继续配置如下:

echo 0 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo -:f0 >> /sys/kernel/debug/tracing/kprobe_events echo 0 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on

​ 一共需要六个步骤。其中,最困难的是第一个参数解析步骤。通常情况下,需要使用gdb 加载对应内核vmlinux, 对 struct task_struct 结构体中 comm成员进行偏移计算。上述方法如果不经常使用,重新手工操作的时间成本非常高,导致真正直接采用ftrace对内核信息进行采集的案例非常少,相关资料文献也匮乏。

1.2、surftrace目标

​ surftrace的主要目标是为了降低内核trace难度,达到快速高效获取内核信息目标。综合来说要达到以下效果:

    1. 一键trace内核符号,并获取指定内核数据;
    1. 除了C和linux 操作系统内核,用户无需新增学习掌握其它知识点(需要获取数据进行二次处理除外);
    1. 覆盖大部分主流发行版内核;
    1. 类似bcc开发模式,达到libbpf最佳资源消耗;

2、surftrace 命令使用

​ 使用surftrace,需要满足以下条件:

    1. 公开发行版linux内核,支持目录清单参考:http://mirrors.openanolis.cn/coolbpf/db/ (持续更新)
    1. 内核支持ftrace,已配置了debugfs,root权限;
    1. Python2 >= 2.7; Python3 >= 3.5,已安装pip;

​ surftrace支持 remote(默认),local和gdb三种表达式解析器,要求分别如下:

    1. remote mode:可以访问pylcc.openanolis.cn
    1. local mode:从http://pylcc.openanolis.cn/db/ 下载对应arch和内核的下载到本地
    1. gdb mode:gdb version > 8.0,存放有对应内核的vmlinux;对于gdb模式而言,不受公开发行版内核限制(性能太弱,已经不再推荐)

2.1、安装

​ 我们以龙蜥 4.19.91-24.8.an8.x86_64内核为例,需要root用户,执行以下命令进行安装:

pip3 install surftrace Collecting surftrace Downloading http://mirrors.cloud.aliyuncs.com/pypi/packages/b9/a2/f7e04bb8ebb12e6517162a70886e3ffe8d466437b15624590c9301fdcc52/surftrace-0.2.tar.gz Building wheels for collected packages: surftrace Running setup.py bdist_wheel for surftrace ... done Stored in directory: /root/.cache/pip/wheels/cf/28/93/187f359be189bf0bf4a70197c53519c6ca54ffb957bcbebf5a Successfully built surftrace Installing collected packages: surftrace Successfully installed surftrace-0.2 

 0.6以上(含)的版本采用https流的方式与服务器传输数据,低于0.6版本采用tcp 流传输。后者服务将从2023年12月31号起后下线。

​ 检查安装是否成功

surftrace --help usage: surftrace [-h] [-v VMLINUX] [-m MODE] [-d DB] [-r RIP] [-f FILE] [-g GDB] [-F FUNC] [-o OUTPUT] [-l LINE] [-a ARCH] [-s] [-S] [traces [traces ...]] Trace ftrace kprobe events. positional arguments: traces set trace args. optional arguments: -h, --help show this help message and exit -v VMLINUX, --vmlinux VMLINUX set vmlinux path. -m MODE, --mode MODE set arg parser, fro -d DB, --db DB set local db path. -r RIP, --rip RIP set remote server ip, remote mode only. -f FILE, --file FILE set input args path. -g GDB, --gdb GDB set gdb exe file path. -F FUNC, --func FUNC disasassemble function. -o OUTPUT, --output OUTPUT set output bash file -l LINE, --line LINE get file disasemble info -a ARCH, --arch ARCH set architecture. -s, --stack show call stacks. -S, --show only show expressions. examples: 

2.2、常规函数入口trace

​ 接下来我们以 以下两个常用内核符号为例,它的原型定义如下:

void wake_up_new_task(struct task_struct *p); struct file *do_filp_open(int dfd, struct filename *pathname, const struct open_flags *op);

2.2.1、追踪符号入口和返回点

  • 命令:surftrace 'p wake_up_new_task' 'r wake_up_new_task'
surftrace 'p wake_up_new_task' 'r wake_up_new_task' echo 'p:f0 wake_up_new_task' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 'r:f1 wake_up_new_task' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f1/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on surftrace-2336 [001] .... 1447.877666: f0: (wake_up_new_task+0x0/0x280) surftrace-2336 [001] d... 1447.877670: f1: (_do_fork+0x153/0x3d0 <- wake_up_new_task)

​ 示例中入参有两个表达式,所有表达式要用单引号括起来。

  • 'p wake_up_new_task':p表示表示probe函数入口;
  • 'r wake_up_new_task':r表示probe函数返回位置;

​ 后面的wake_up_new_task是要trace的函数符号,这个符号必须要在tracing/available_filter_functions 中可以找到的。

2.2.2、获取函数入参

​ 要获取 do_filp_open 函数 第一个入参dfd,它的数据类型是:int。

​- 命令:surftrace 'p do_filp_open dfd=%0'

surftrace 'p do_filp_open dfd=%0' echo 'p:f0 do_filp_open dfd=%di:u32' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on surftrace-2435 [001] .... 2717.606277: f0: (do_filp_open+0x0/0x100) dfd=4294967196 AliYunDun-1812 [000] .... 2717.655955: f0: (do_filp_open+0x0/0x100) dfd=4294967196 AliYunDun-1812 [000] .... 2717.856227: f0: (do_filp_open+0x0/0x100) dfd=4294967196
  • dfd是自定义变量,可以自行定义,名字不冲突即可
  • %0表示第一个入参,%1表示第二个……

​ 前面打印中,dfd是按照十进制显示的,可能没有十六进制那么直观,指定十六进制的方法:

​ 命令:surftrace 'p do_filp_open dfd=X%0'

surftrace 'p do_filp_open dfd=X%0' echo 'p:f0 do_filp_open dfd=%di:x32' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on surftrace-2459 [000] .... 3137.167885: f0: (do_filp_open+0x0/0x100) dfd=0xffffff9c AliYunDun-1812 [001] .... 3137.171997: f0: (do_filp_open+0x0/0x100) dfd=0xffffff9c AliYunDun-1826 [001] .... 3137.201401: f0: (do_filp_open+0x0/0x100) dfd=0xffffff9c 

​ 传参编号%前面使用了X进制类型标识符,共有SUX三种类型,分别对应有符号十进制、无符号十进制和十六进制,不指定默认为U类型。

2.2.3、解析入参结构体

​ wake_up_new_task入参类型为struct task_struct *,如果要获取入参中comm成员,即任务名,

​- 命令:surftrace 'p wake_up_new_task comm=%0->comm'

surftrace 'p wake_up_new_task comm=%0->comm' echo 'p:f0 wake_up_new_task comm=+0xae0(%di):string' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on surftrace-2421 [000] .... 2368.261019: f0: (wake_up_new_task+0x0/0x280) comm="surftrace" bash-2392 [001] .... 2375.809655: f0: (wake_up_new_task+0x0/0x280) comm="bash" bash-2392 [001] .... 2379.038534: f0: (wake_up_new_task+0x0/0x280) comm="bash" bash-2392 [000] .... 2381.237443: f0: (wake_up_new_task+0x0/0x280) comm="bash"

​ 方法和C语言获取结构体成员方法一样。

​ 结构体类型可以级联访问:

 surftrace 'p wake_up_new_task uesrs=S%0->mm->mm_users' echo 'p:f0 wake_up_new_task uesrs=+0x58(+0x850(%di)):s32' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on surftrace-2471 [001] .... 3965.234680: f0: (wake_up_new_task+0x0/0x280) uesrs=2 bash-2392 [000] .... 3970.094475: f0: (wake_up_new_task+0x0/0x280) uesrs=1 bash-2392 [000] .... 3971.954463: f0: (wake_up_new_task+0x0/0x280) uesrs=1
surftrace 'p wake_up_new_task node=%0->se.run_node.rb_left' echo 'p:f0 wake_up_new_task node=+0xa8(%di):u64' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on surftrace-2543 [001] .... 5926.605145: f0: (wake_up_new_task+0x0/0x280) node=0 bash-2392 [001] .... 5940.292293: f0: (wake_up_new_task+0x0/0x280) node=0 bash-2392 [001] .... 5945.207106: f0: (wake_up_new_task+0x0/0x280) node=0 systemd-journal-553 [000] .... 5953.211998: f0: (wake_up_new_task+0x0/0x280) node=0

2.2.4、设置过过滤器

​ 过滤器需要放在表达式最后,以f:开头,可以使用括号和&& ||逻辑表达式进行组合,具体写法可以参考ftrace文档说明

​ 命令行 surftrace 'p wake_up_new_task comm=%0->comm f:comm=="python3"'

surftrace 'p wake_up_new_task comm=%0->comm f:comm=="python3"' echo 'p:f0 wake_up_new_task comm=+0xb28(%di):string' >> /sys/kernel/debug/tracing/kprobe_events echo 'comm=="python3"' > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/filter echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-2640781 [002] .... 6305734.444913: f0: (wake_up_new_task+0x0/0x250) comm="python3" <...>-2640781 [002] .... 6305734.447806: f0: (wake_up_new_task+0x0/0x250) comm="python3" <...>-2640781 [002] .... 6305734.450897: f0: (wake_up_new_task+0x0/0x250) comm="python3"

 系统会默认提供 'common_pid', 'common_preempt_count', 'common_flags', 'common_type' 这5个变量作为过滤器,该变量由系统提供,无需额外定义。

2.2.5、函数内部追踪

​ 函数内部追踪需要结合函数内部汇编代码进行推导,该方法并不通用,该内容操作进供参考。反汇编do_filp_open函数

3699in fs/namei.c  0xffffffff812adb65 <+85>:mov %r13d,%edx  0xffffffff812adb70 <+96>:or $0x40,%edx  0xffffffff812adb73 <+99>:mov %r12,%rsi  0xffffffff812adb76 <+102>:mov %rsp,%rdi  0xffffffff812adb89 <+121>:	callq 0xffffffff812ac760 <path_openat>  0xffffffff812adb92 <+130>:mov %rax,%rbx 3700in fs/namei.c  0xffffffff812adb8e <+126>:cmp $0xfffffffffffffff6,%rax  0xffffffff812adb95 <+133>:je 0xffffffff812adbb4 <do_filp_open+164> 3701in fs/namei.c  0xffffffff812adbb4 <+164>:mov %r13d,%edx  0xffffffff812adbb7 <+167>:mov %r12,%rsi  0xffffffff812adbba <+170>:mov %rsp,%rdi  0xffffffff812adbbd <+173>:	callq 0xffffffff812ac760 <path_openat>  0xffffffff812adbc2 <+178>:mov %rax,%rbx  0xffffffff812adbc5 <+181>:jmp 0xffffffff812adb97 <do_filp_open+135> 3702in fs/namei.c  0xffffffff812adb97 <+135>:cmp $0xffffffffffffff8c,%rbx  0xffffffff812adb9b <+139>:je 0xffffffff812adbc7 <do_filp_open+183>

 对应源码

struct file *do_filp_open(int dfd, struct filename *pathname, const struct open_flags *op) { struct nameidata nd; int flags = op->lookup_flags; struct file *filp; set_nameidata(&nd, dfd, pathname); filp = path_openat(&nd, op, flags | LOOKUP_RCU); if (unlikely(filp == ERR_PTR(-ECHILD))) filp = path_openat(&nd, op, flags); if (unlikely(filp == ERR_PTR(-ESTALE))) filp = path_openat(&nd, op, flags | LOOKUP_REVAL); restore_nameidata(); return filp; }

 要获取 3699行 filp = path_openat(&nd, op, flags | LOOKUP_RCU) 对应的filp的值

surftrace 'p do_filp_open+121 filp=X!(u64)%ax' echo 'p:f0 do_filp_open+121 filp=%ax:x64' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-1315799 [006] d.Z. 6314249.201847: f0: (do_filp_open+0x79/0xd0) filp=0xffff929db2819840 <...>-4006158 [014] d.Z. 6314249.326736: f0: (do_filp_open+0x79/0xd0) filp=0xffff929daeac48c0

 变量表达式:filp=X!(u64)%ax 中,使用!对寄存器类型进行数据类型强制转换,括号当中的是是数据类型定义。

 展开 struct file 结构体定义:

struct file { union { struct llist_node fu_llist; struct callback_head fu_rcuhead; } f_u; struct path f_path; struct inode *f_inode; const struct file_operations *f_op; spinlock_t f_lock; enum rw_hint f_write_hint; atomic_long_t f_count; unsigned int f_flags; fmode_t f_mode; struct mutex f_pos_lock; loff_t f_pos; struct fown_struct f_owner; const struct cred *f_cred; struct file_ra_state f_ra; u64 f_version; void *f_security; void *private_data; struct list_head f_ep_links; struct list_head f_tfile_llink; struct address_space *f_mapping; errseq_t f_wb_err; }

​ 如果要获取此时的f_pos值,可以这样获取

  • 命令行:surftrace 'p do_filp_open+121 pos=X!(struct file*)%ax->f_pos'
surftrace 'p do_filp_open+121 pos=X!(struct file*)%ax->f_pos' echo 'p:f0 do_filp_open+121 pos=+0x68(%ax):x64' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-1334277 [010] d.Z. 6314645.646230: f0: (do_filp_open+0x79/0xd0) pos=0x0 <...>-2916553 [002] d.Z. 6314645.653164: f0: (do_filp_open+0x79/0xd0) pos=0x0 <...>-2916553 [002] d.Z. 6314645.653253: f0: (do_filp_open+0x79/0xd0) pos=0x0

 获取方法和前面保持一致。

2.3、获取返回值

​ 前文已经描述采用r 对事件类型进行标识,返回寄存器统一用$retval标识,与ftrace保持一致,以获取do_filp_open函数返回值为例:

  • 命令行:surftrace 'r do_filp_open filp=$retval'
surftrace 'r do_filp_open filp=$retval' echo 'r:f0 do_filp_open filp=$retval:u64' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-1362926 [010] d... 6315264.198718: f0: (do_sys_openat2+0x1b6/0x260 <- do_filp_open) filp=18446623804769722880 <...>-4006154 [008] d... 6315264.256749: f0: (do_sys_openat2+0x1b6/0x260 <- do_filp_open) filp=18446623804770426624 <...>-4006154 [008] d... 6315264.256776: f0: (do_sys_openat2+0x1b6/0x260 <- do_filp_open) filp=18446623804770425344

​ 获取 struct file 中f_pos成员

  • 命令行:surftrace 'r do_filp_open pos=$retval->f_pos'
surftrace 'r do_filp_open pos=$retval->f_pos' echo 'r:f0 do_filp_open pos=+0x68($retval):u64' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-1371049 [008] d... 6315439.568814: f0: (do_sys_openat2+0x1b6/0x260 <- do_filp_open) pos=0 systemd-journal-3665 [012] d... 6315439.568962: f0: (do_sys_openat2+0x1b6/0x260 <- do_filp_open) pos=0 systemd-journal-3665 [012] d... 6315439.571519: f0: (do_sys_openat2+0x1b6/0x260 <- do_filp_open) pos=0

2.4、网络报文特殊处理

​ sk_buff 是linux网络协议栈重要的结构体,通过前面的方法,并不能直接解析到我们关注的报文内容,需要进行特殊处理。以追踪icmp接收ping报文为例,我们在__netif_receive_skb_core 函数中进行probe和过滤:

  • 命令行 surftrace 'p __netif_receive_skb_core proto=@(struct iphdr *)l3%0->protocol ip_src=@(struct iphdr *)%0->saddr ip_dst=@(struct iphdr *)l3%0->daddr data=X@(struct iphdr *)l3%0->sdata[1] f:proto==1&&ip_src==127.0.0.1'
  • 同时可能需要 执行 ping127.0.0.1
surftrace 'p __netif_receive_skb_core proto=@(struct iphdr *)l3%0->protocol ip_src=@(struct iphdr *)%0->saddr ip_dst=@(struct iphdr *)l3%0->daddr data=X@(struct iphdr *)l3%0->sdata[1] f:proto==1&&ip_src==127.0.0.1' echo 'p:f0 __netif_receive_skb_core proto=+0x9(+0xe8(%di)):u8 ip_src=+0xc(+0xe8(%di)):u32 ip_dst=+0x10(+0xe8(%di)):u32 data=+0x16(+0xe8(%di)):x16' >> /sys/kernel/debug/tracing/kprobe_events echo 'proto==1&&ip_src==0x100007f' > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/filter echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-1420827 [013] ..s1 6316511.011244: f0: (__netif_receive_skb_core+0x0/0xc10) proto=1 ip_src=127.0.0.1 ip_dst=127.0.0.1 data=0x4a0d <...>-1420827 [013] ..s1 6316511.011264: f0: (__netif_receive_skb_core+0x0/0xc10) proto=1 ip_src=127.0.0.1 ip_dst=127.0.0.1 data=0x4a15

​ 协议的获取表达式为 @(struct iphdr *)l3%0->protocol,和之前不一样的是,寄存器的结构体名左括号加了@符号进行特殊标记,表示需要用该结构体来解析skb->data指针数据,结构体名和右括号后加了l3标记(命名为右标记),表示当前skb->data指向了TCP/IP 层3位置。

  • 右标记有l2、l3、l4三个选项,也可以不标记,默认为l3,如 ip_src=@(struct iphdr *)%0->saddr,没有右标记。
  • 报文结构体有 'struct ethhdr', 'struct iphdr', 'struct icmphdr', 'struct tcphdr', 'struct udphdr'五类,如果协议栈层级和报文结构体对应不上,解析器会报参数错误,如右标记为l3,但是报文结构体是 struct ethhdr类型;
  • 'struct icmphdr', 'struct tcphdr', 'struct udphdr'这三个4层结构体增加了xdata成员,用于获取协议对应报文内容。xdata有 cdata. sdata, ldata, qdata, Sdata 五种类型,位宽对应 1 2 4 8 和字符串. 数组下标是按照位宽进行对齐的,如实例表达式中的 data=@(struct icmphdr*)l3%0->sdata[1],sdata[1]表示要提取icmp报文中的2~3字节内容
  • surftrace 会对以 ip_xx开头的变量进行ipv4<->u32 ,如 ip_src=@(struct iphdr *)%0->saddr,会转成对应的IP格式。对B16_、B32_、B64_、b16_、b32_、b64_开头的变量也会进行大小端转换,B开头按照16进制输出,b以10进制输出。

2.5、event

​ trace event 信息参考 /sys/kernel/debug/tracing/events目录下的事件 描述,以追踪wakeup等待超过10ms任务为例

​ 命令行 surftrace 'e sched/sched_stat_wait f:delay>1000000'

surftrace 'e sched/sched_stat_wait f:delay>1000000' echo 'delay>1000000' > /sys/kernel/debug/tracing/instances/surftrace/events/sched/sched_stat_wait/filter echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/sched/sched_stat_wait/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <idle>-0 [001] dN.. 11868700.419049: sched_stat_wait: comm=h2o pid=3046552 delay=87023763 [ns] <idle>-0 [005] dN.. 11868700.419049: sched_stat_wait: comm=h2o pid=3046617 delay=87360020 [ns]

2.6、全局变量以及指定地址访问

2.6.1、访问内核符号:

 以访问 task_group_cache 这个全局符号为例,它的定义如下:

static struct kmem_cache *task_group_cache __read_mostly;

 获取指针信息

surftrace 'p wake_up_new_task point=@task_group_cache' echo 'p:f0 wake_up_new_task point=@task_group_cache' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-3626383 [000] .... 12192156.289170: f0: (wake_up_new_task+0x0/0x250) point=0xffff929dc0405500 <...>-2282088 [006] .... 12192156.294148: f0: (wake_up_new_task+0x0/0x250) point=0xffff929dc0405500 <...>-3626558 [001] .... 12192156.305044: f0: (wake_up_new_task+0x0/0x250) point=0xffff929dc0405500 <...>-3626558 [001] .... 12192156.305133: f0: (wake_up_new_task+0x0/0x250) point=0xffff929dc0405500

 解析变量结构体内容:

surftrace 'p wake_up_new_task name=!(struct kmem_cache*)@task_group_cache->name size=!(struct kmem_cache*)@task_group_cache->size' echo 'p:f0 wake_up_new_task name=+0x0(+0x58(@task_group_cache)):string size=+0x18(@task_group_cache):u32' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-3736660 [014] .... 12192459.242704: f0: (wake_up_new_task+0x0/0x250) name="task_group" size=704 <...>-2282088 [008] .... 12192459.266579: f0: (wake_up_new_task+0x0/0x250) name="task_group" size=704 <...>-3736816 [001] .... 12192459.278101: f0: (wake_up_new_task+0x0/0x250) name="task_group" size=704 <...>-3736816 [001] .... 12192459.278169: f0: (wake_up_new_task+0x0/0x250) name="task_group" size=704

2.6.2、访问指定地址

 根据ftrace要求,访问地址必须要在内核地址范围内。继续以以访问 task_group_cache 这个全局符号为例,首先获取符号地址

cat /proc/kallsyms |grep task_group_cache ffffffff8647bc30 d task_group_cache

 查询命令(注意,不同内核地址不一致,不能简单复制):

surftrace 'p wake_up_new_task name=!(struct kmem_cache*)@0xffffffff8647bc30->name size=!(struct kmem_cache*)@0xffffffff8647bc30->size' echo 'p:f0 wake_up_new_task name=+0x0(+0x58(@0xffffffff8647bc30)):string size=+0x18(@0xffffffff8647bc30):u32' >> /sys/kernel/debug/tracing/kprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/kprobes/f0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-3910607 [012] .... 12193362.784157: f0: (wake_up_new_task+0x0/0x250) name="task_group" size=704 <...>-3386586 [012] .... 12193362.960034: f0: (wake_up_new_task+0x0/0x250) name="task_group" size=704 <...>-3386586 [012] .... 12193362.963222: f0: (wake_up_new_task+0x0/0x250) name="task_group" size=704 

2.7、自编ko支持

 如果需要trace自定义ko,但是默认的数据结构信息只包含发行版中rpm/deb包中的数据。需要生成自定义ko的数据。

2.7.1、生成本地数据:

 要求:

  1. surftrace版本不低于0.7.1,可执行pip install -U surftrace 命令进行更新;
  2. 要追踪的ko放在同一目录下,并且没有strip掉调试信息;

 生成过程比较简单,将ko所在目录作为唯一传参,传kobuild,就可以在当前目录下生成prev.db 文件:

#kobuild ko/ #ll -h prev.db -rw-r--r-- 1 root root 592K May 29 00:10 prev.db

 出于效率和尺寸考虑,kobuild会将ko数量限制在32个,总文件大小小于16M,大于此数值会报失败。

2.7.2、使用prev.db:

 可以采用以下两种方式使用prev.db 数据:

  1. 在prev.db 所在的目录下 执行surftrace相关操作;
  2. export LBC_PREVDB 环境变量,指向prev.db 完整路径,含文件名;

 此时surftrace会优先检索prev.db中的数据,检索失败后才会进行远端/本地搜索结构信息。

2.8、符号调用过程追踪(surfGraph/function_graph)

 调用过程追踪(surfGraph)可以将一个内核函数的内部调用流程和各个阶段耗时直观呈现出来。对一下场景尤为有帮助:

  1. 了解函数调用关系;
  2. 定位内核性能问题;

 注意事项和使用约束:

  1. 目标符号在内核符号范围内
  2. 全局追踪,不支持过滤器
  3. 高频调用的符号会消耗较高的cpu资源,可能导致追踪失败。

2.8.1、命令说明

usage: surfGraph [-h] [-f FUNCTION] [-m MODE] [-s STEP] [-o OUTPUT] kernel function call graph tool. optional arguments: -h, --help show this help message and exit -f FUNCTION, --function FUNCTION set function to call graph. -m MODE, --mode MODE set output mode, support svg(default)/tree/walk/raw -s STEP, --step STEP write file by every step, only for svg mode. -o OUTPUT, --output OUTPUT save trees to *.tree file, 32 max examples: surfGraph -f __do_fault 

2.8.2、使用示例

 以追踪 __do_fault 符号为例,在环境下执行以下命令:

#surfGraph -f __do_fault echo nop > /sys/kernel/debug/tracing/current_tracer echo __do_fault > /sys/kernel/debug/tracing/set_graph_function echo function_graph > /sys/kernel/debug/tracing/current_tracer echo 1 > /sys/kernel/debug/tracing/tracing_on save __do_fault-1.svg save __do_fault-2.svg save __do_fault-3.svg save __do_fault-4.svg …… save __do_fault-241.svg ^Csave __do_fault-242.svg echo 0 > /sys/kernel/debug/tracing/tracing_on echo > /sys/kernel/debug/tracing/set_graph_function write __do_fault.svg 

 此时会在命令所在目录生成符号对应的火焰图文件。单个火焰图的文件格式为[symbol]-[serial].svg,总火焰图文件格式为 [symbol].svg。任意一次火焰图的效果:

graph

 总火焰图

graphs

 Tips:由于python3.6(不含)之前的版本字典没有保序,因此生成的单火焰图平行的符号并没有确定的先后关系。如果需要明确的函数先后调用关系,建议在python3.6版本上使用该功能。

2.9 用户态追踪 uprobe

 uprobe是和kprobe类似的调试手段,用于追踪用户态符号调用状况,当然也可以深入符号内部进行追踪,与kprobe基本一致。注意事项如下:

  1. 依赖于readelf命令,需要安装 binutils 包;
  2. 符号参数解析依赖于高版本的gdb,建议从 http://100.82.20.22/gdb/ 下载 最新版本;

 支持命令列表:

  • P: 追踪函数入口,支持符号内部追踪;
  • R:追踪函数返回点,

2.9.1、命令追踪

 追踪 bash 调用readline 函数

#surftrace 'P bash:readline' echo nop > /sys/kernel/debug/tracing/instances/surftrace/current_tracer echo 0 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/p0/enable echo -:p0 >> /sys/kernel/debug/tracing/uprobe_events echo 'p:p0 /usr/bin/bash:0x8a870' >> /sys/kernel/debug/tracing/uprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/p0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-114811 [002] d... 14628569.434360: p0: (0x48a870) <...>-114811 [002] d... 14628571.197338: p0: (0x48a870) <...>-114811 [002] d... 14628572.361030: p0: (0x48a870) ^Cecho 0 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/p0/enable echo -:p0 >> /sys/kernel/debug/tracing/uprobe_events echo 0 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on 

  设置过滤器,过滤进程:

surftrace 'P bash:readline f:common_pid==114811' echo nop > /sys/kernel/debug/tracing/instances/surftrace/current_tracer echo 'p:p0 /usr/bin/bash:0x8a870' >> /sys/kernel/debug/tracing/uprobe_events echo 'common_pid==114811' > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/p0/filter echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/p0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-114811 [000] d... 14628883.768443: p0: (0x48a870) <...>-114811 [000] d... 14628893.438465: p0: (0x48a870) ^Cecho 0 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/p0/enable echo -:p0 >> /sys/kernel/debug/tracing/uprobe_events echo 0 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on 

 获取返回值,并打印

surftrace 'R bash:readline cmd=!(char *)$retval' echo nop > /sys/kernel/debug/tracing/instances/surftrace/current_tracer echo 'r:r0 /usr/bin/bash:0x8a870 cmd=+0x0($retval):string' >> /sys/kernel/debug/tracing/uprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/r0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-114811 [000] d... 14629155.134831: r0: (0x41e66a <- 0x48a870) cmd="top" <...>-114811 [000] d... 14629159.092198: r0: (0x41e66a <- 0x48a870) cmd="ps" <...>-114811 [000] d... 14629167.728730: r0: (0x41e66a <- 0x48a870) cmd="ifconfig" ^Cecho 0 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/r0/enable echo -:r0 >> /sys/kernel/debug/tracing/uprobe_events echo 0 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on 

2.9.2、so 追踪

 追踪libc中sleep 函数,并打印sleep 时间

#surftrace 'P libc:sleep t=%0' echo nop > /sys/kernel/debug/tracing/instances/surftrace/current_tracer /lib64/libc-2.17.so echo 'p:p0 /lib64/libc-2.17.so:0xc4c60 t=%di:u32' >> /sys/kernel/debug/tracing/uprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/p0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-117611 [003] d... 14629434.944287: p0: (0x7fc9bfe3cc60) t=1 <...>-117611 [003] d... 14629435.944483: p0: (0x7fc9bfe3cc60) t=1 <...>-117611 [003] d... 14629436.944646: p0: (0x7fc9bfe3cc60) t=1 <...>-117611 [003] d... 14629437.944852: p0: (0x7fc9bfe3cc60) t=1 <...>-117611 [003] d... 14629438.945000: p0: (0x7fc9bfe3cc60) t=1 ^Cecho 0 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/p0/enable echo -:p0 >> /sys/kernel/debug/tracing/uprobe_events echo 0 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on 

 获取libc 中 fopen函数并过滤返回值

surftrace 'R libc:fopen file=$retval f:file==0' echo nop > /sys/kernel/debug/tracing/instances/surftrace/current_tracer /lib64/libc-2.17.so echo 'r:r0 /lib64/libc-2.17.so:0x6eb40 file=$retval' >> /sys/kernel/debug/tracing/uprobe_events echo 'file==0' > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/r0/filter echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/r0/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-69760 [003] d... 14629691.970192: r0: (0x556be9a166ff <- 0x7f8e38270b40) file=0x0 <...>-69760 [003] d... 14629691.970241: r0: (0x556be9a132ea <- 0x7f8e38270b40) file=0x0 ^Cecho 0 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/r0/enable echo -:r0 >> /sys/kernel/debug/tracing/uprobe_events echo 0 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on 

2.9.3、追踪自己编译的二进制

 以下是自定义的C语言代码,一个非常简单的结构体和函数调用实现

#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/types.h> #include <sys/wait.h> struct uprobe_def{ int a; int b; }; int func(int v, struct uprobe_def* ud) { printf("show %d, a: %d, b:%d\n", v, ud->a, ud->b); return v; } int main(void) { int i; struct uprobe_def ud = {1, 1}; printf("hello, uprobe. %d\n", getpid()); sleep(1); for (i = 1; i < 1000; i ++){ ud.a = i * 2; ud.b = i * 3; func(i, &ud); sleep(1); } return 0; } 

 编译成二进制,注意要添加-g 选项,否则无法解析符号

gcc tuprobe.c -o tuprobe -g 

 追踪函数入参和返回值

surftrace 'P tuprobe:func v=%0 a=%1->a b=%1->b' 'R tuprobe:func v=$retval' echo nop > /sys/kernel/debug/tracing/instances/surftrace/current_tracer echo 'p:p0 /root/1ext/code/surftrace/tests/uprobe/tuprobe:0x5bd v=%di:u32 a=+0x0(%si):u32 b=+0x4(%si):u32' >> /sys/kernel/debug/tracing/uprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/p0/enable echo 'r:r1 /root/1ext/code/surftrace/tests/uprobe/tuprobe:0x5bd v=$retval' >> /sys/kernel/debug/tracing/uprobe_events echo 1 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/r1/enable echo 0 > /sys/kernel/debug/tracing/instances/surftrace/options/stacktrace echo 1 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on <...>-124305 [000] d... 14634026.257596: p0: (0x4005bd) v=1 a=2 b=3 <...>-124305 [000] d... 14634026.258737: r1: (0x400656 <- 0x4005bd) v=0x1 <...>-124305 [000] d... 14634027.259074: p0: (0x4005bd) v=2 a=4 b=6 <...>-124305 [000] d... 14634027.259142: r1: (0x400656 <- 0x4005bd) v=0x2 <...>-124305 [000] d... 14634028.259265: p0: (0x4005bd) v=3 a=6 b=9 <...>-124305 [000] d... 14634028.259371: r1: (0x400656 <- 0x4005bd) v=0x3 <...>-124305 [000] d... 14634029.259468: p0: (0x4005bd) v=4 a=8 b=12 <...>-124305 [000] d... 14634029.259534: r1: (0x400656 <- 0x4005bd) v=0x4 ^Cecho 0 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/p0/enable echo -:p0 >> /sys/kernel/debug/tracing/uprobe_events echo 0 > /sys/kernel/debug/tracing/instances/surftrace/events/uprobes/r1/enable echo -:r1 >> /sys/kernel/debug/tracing/uprobe_events echo 0 > /sys/kernel/debug/tracing/instances/surftrace/tracing_on 

3、surfGuide 使用

​ surfGuide可以直接运行,命令行已经有一些使用帮助提示。现在手头任务紧张,等有空了再补充完善吧。

​ 安装:pip install surfGuide

​ 然后运行 surfGuide 就可以使用了。

4、使用surfGuide发布通用命令

同上

5、接管surftrace数据进行开发处理

同上上

6、pylcc原理以及流程图

 pylcc在libbpf基础上进行封装,将复杂的编译工程交由容器执行 pylcc.png

6、1 准备工作

基本要求

  • 能力要求:熟悉c,libpf开发特性,python
  • python2.7 或者python3都可以运行,无需安装任何第三方库。
  • 环境要求:可以访问pylcc.openanolis.cn。后面编译容器发布了以后,可以自行搭建编译服务执行

6.2 实战

执行pip install pylcc安装

git clone git@github.com:aliyun/surftrace.git 

示例代码 在目录 tool/pylcc/guide下

6.3.1 从hello world 开始

hello.py 代码

import time from pylcc.lbcBase import ClbcBase bpfPog = r""" #include "lbc.h"  SEC("kprobe/wake_up_new_task") int j_wake_up_new_task(struct pt_regs *ctx) {  struct task_struct* parent = (struct task_struct *)PT_REGS_PARM1(ctx);    bpf_printk("hello lcc, parent: %d\n", _(parent->tgid));  return 0; }  char _license[] SEC("license") = "GPL"; """ class Chello(ClbcBase): def __init__(self): super(Chello, self).__init__("hello", bpf_str=bpfPog) while True: time.sleep(1) if __name__ == "__main__": hello = Chello() pass

6.3.1.1 bpf代码说明:

  • bpf代码需要包含 lbc.h 头文件,该头文件会包含以下头文件,并且会加上我们常见的宏定义和数据类型,详情参考后面的附录,
#include "vmlinux.h" #include <linux/types.h> #include <bpf/bpf_helpers.h> #include <bpf/bpf_core_read.h> #include <bpf/bpf_tracing.h>
  • SEC的定义和函数内部实现与libbpf应用方法保持一致;
  • 访问结构体成员使用了_宏,该方法访问方式相对固定,下一节会提供core的获取方法;
  • 末尾不要遗忘 _license声明

6.3.1.2、python代码实现部分说明:

 python 部分代码从ClbcBase 类继承,__init__函数中,第一入参必须要指定,用于指定生成so的文件名。在执行完__init__函数后,bfp模块就已经注入到内核当中去执行了。

6.3.1.3、执行效果:

 执行 python2 hello.py 运行,并查看编译结果:

#cat /sys/kernel/debug/tracing/trace_pipe <...>-1091294 [005] d... 17658161.425644: : hello lcc, parent: 106880 <...>-4142485 [003] d... 17658161.428568: : hello lcc, parent: 4142485 <...>-4142486 [002] d... 17658161.430972: : hello lcc, parent: 4142486 <...>-4142486 [002] d... 17658161.431228: : hello lcc, parent: 4142486 <...>-4142486 [002] d... 17658161.431557: : hello lcc, parent: 4142486 <...>-4142485 [003] d... 17658161.435385: : hello lcc, parent: 4142485 <...>-4142490 [000] d... 17658161.437562: : hello lcc, parent: 4142490

 此时可以看到目录下新增了hello.so 文件,如果文件时间戳有更新,只要bpfProg部分内容不发生改变,就不会触发重编动作。如果bpfProg 发生变换,就会触发重新编译动作,生成新的so

6.3.2 往用户态传递信息

 代码参考 eventOut.py

import ctypes as ct from pylcc.lbcBase import ClbcBase bpfPog = r""" #include "lbc.h" #define TASK_COMM_LEN 16 struct data_t {  u32 c_pid;  u32 p_pid;  char c_comm[TASK_COMM_LEN];  char p_comm[TASK_COMM_LEN]; };  LBC_PERF_OUTPUT(e_out, struct data_t, 128); SEC("kprobe/wake_up_new_task") int j_wake_up_new_task(struct pt_regs *ctx) {  struct task_struct* parent = (struct task_struct *)PT_REGS_PARM1(ctx);  struct data_t data = {};   data.c_pid = bpf_get_current_pid_tgid() >> 32;  bpf_get_current_comm(&data.c_comm, TASK_COMM_LEN);  data.p_pid = BPF_CORE_READ(parent, pid);  bpf_core_read(&data.p_comm[0], TASK_COMM_LEN, &parent->comm[0]);    bpf_perf_event_output(ctx, &e_out, BPF_F_CURRENT_CPU, &data, sizeof(data));  return 0; }  char _license[] SEC("license") = "GPL"; """ class CeventOut(ClbcBase): def __init__(self): super(CeventOut, self).__init__("eventOut", bpf_str=bpfPog) def _cb(self, cpu, data, size): e = self.getMap('e_out', data, size) print("current pid:%d, comm:%s. wake_up_new_task pid: %d, comm: %s" % ( e.c_pid, e.c_comm, e.p_pid, e.p_comm )) def loop(self): self.maps['e_out'].open_perf_buffer(self._cb) try: self.maps['e_out'].perf_buffer_poll() except KeyboardInterrupt: print("key interrupt.") exit() if __name__ == "__main__": e = CeventOut() e.loop()

6.3.2.1 bpf部分代码说明:

  • LBC_PERF_OUTPUT宏不能用原有的bpf_map_def ……BPF_MAP_TYPE_PERF_EVENT_ARRAY…… 替代,虽然是同样申明一个 perf maps,但如果用原始的声明方式,python在加载的时候将无法识别出对应的内核数据类型。
  • 可以使用 bpf_get_current_pid_tgid 等libbpf helper函数;
  • 可以使用 bpf_core_read 等方法;
  • 不可使用 bcc 独有的方法,如直接指针访问变量等;

6.3.2.2 python部分代码说明

 以loop函数为入口:

  • self.maps['e_out'].open_perf_buffer(self._cb)函数是为 e_out事件注册回调钩子函数,其中e_out命名与bpfProg中LBC_PERF_OUTPUT(e_out, struct data_t, 128) 对应;
  • self.maps['e_out'].perf_buffer_poll() 即poll 对应的event事件,与bpfProg中 bpf_perf_event_output(ctx, &e_out……对应;

 接下来看_cb 回调函数:

  • e = self.getMap('e_out', data, size) 将数据流生成对应的数据对象;
  • 生成了数据对象后,就可以通过成员的方式来访问数据对象,该对象成员与bpfProg中 struct data_t 定义保持一致

6.3.2.3 执行结果

python2 eventOut.py current pid:241808, comm:python. wake_up_new_task parent pid: 241871, comm: python current pid:1, comm:systemd. wake_up_new_task parent pid: 1, comm: systemd ……

6.3.3 动态修改bpfProg代码

 在3.2的基础上,参考dynamicVar.py,如果只想动态过滤parent进程id为 241871,可以借鉴bcc的思路进行替换,大部分代码与eventOut.py一致,首先在bpfProg代码添加了过滤动作:

	…… u32 pid = BPF_CORE_READ(parent, pid); if (pid != FILTER_PID) { return 0; }	……

 然后在main入口处进行替换

if __name__ == "__main__": bpfPog = bpfPog.replace("FILTER_PID", sys.argv[1]) e = CdynamicVar() e.loop

 将要过滤的参数传入,执行效果

python2 dynamicVar.py 241871 current pid:241808, comm:python. wake_up_new_task pid: 241871, comm: python current pid:241808, comm:python. wake_up_new_task pid: 241871, comm: python current pid:241808, comm:python. wake_up_new_task pid: 241871, comm: python

6.3.4 hash map应用

 代码参考 hashMap.py,大部分代码与eventOut.py一致。

6.3.4.1 bpf 部分代码

 定义hashmap

LBC_HASH(pid_cnt, u32, u32, 1024);

使用方法和libbfp一致

u32 *pcnt, cnt; pcnt = bpf_map_lookup_elem(&pid_cnt, &pid); cnt = pcnt ? *pcnt + 1 : 1; bpf_map_update_elem(&pid_cnt, &pid, &cnt, BPF_ANY);

6.3.4.2 python部分代码

 查询maps的位置在exit退出之前打印所有信息

…… dMap = self.maps['pid_cnt'] print(dMap.get()) exit()

 哈希表对象可以直接由 self.maps['pid_cnt'] 方法获取到,可以调用get函数,获取到dict对象。

 除了BPF_MAP_TYPE_HASH,lcc当前还支持BPF_MAP_TYPE_LRU_HASH、BPF_MAP_TYPE_PERCPU_HASH、 BPF_MAP_TYPE_LRU_PERCPU_HASH等类型,更多类型支持在完善中,敬请期待。

6.3.4.3 注意点

  1. hash map key 应该是是可哈希类型的,如int等,不能为dict(对应自定义结构体)

6.3.5、call stack获取

 获取内核调用栈是bpf一项非常重要的调试功能,参考 callStack.py,大部分代码与eventOut.py一致。

6.3.5.1、bpf部分代码说明

 外传的数据结构体中增加stack_id成员,接下来定义一个call stack成员

struct data_t { u32 c_pid; u32 p_pid; char c_comm[TASK_COMM_LEN]; char p_comm[TASK_COMM_LEN]; u32 stack_id; }; LBC_PERF_OUTPUT(e_out, struct data_t, 128); LBC_STACK(call_stack,32);

 在处理函数中记录call stack

data.stack_id = bpf_get_stackid(ctx, &call_stack, KERN_STACKID_FLAGS);

6.3.5.2、python部分代码

 通过getStacks传入stack_id,即可获取调用栈符号数组,然后列出来即可

stacks = self.maps['call_stack'].getStacks(e.stack_id) print("call trace:") for s in stacks: print(s)

6.3.5.3、执行结果

python callStack.py remote server compile success. current pid:1, comm:systemd. wake_up_new_task pid: 1, common: systemd call trace: startup_64 do_syscall_64 entry_SYSCALL_64_after_swapgs

6.3.6、py与bpf.c文件分离

 参考 codeSeparate.py 和 independ.bpf.c,它的功能实现和eventOut.py 完全一致,不一样的是将python和bpf.c的功能拆分到了两个文件中去实现。  我们只需要关注下__init__函数

 def __init__(self): super(codeSeparate, self).__init__("independ")

 它没有了 bpf_str 入参,此时lcc会尝试从当前目录上下,去找independ.bpf.c并提请编译加载。

6.3.7 调试函数

 调试信息输出函数函数如下:

#ifdef LBC_DEBUG #define lbc_debug(...) bpf_printk(__VA_ARGS__) #else #define lbc_debug(...) #endif

 这个开关可以通过构造函数中env成员传入:

import time from pylcc.lbcBase import ClbcBase bpfPog = r""" #include "lbc.h"  SEC("kprobe/wake_up_new_task") int j_wake_up_new_task(struct pt_regs *ctx) {  struct task_struct* parent = (struct task_struct *)PT_REGS_PARM1(ctx);    lbc_debug("hello lcc, parent: %d\n", _(parent->tgid));  return 0; }  char _license[] SEC("license") = "GPL"; """ class Chello(ClbcBase): def __init__(self): super(Chello, self).__init__("hello", bpf_str=bpfPog, env="-DLBC_DEBUG") while True: time.sleep(1) if __name__ == "__main__": hello = Chello() pass

 如果不想打印,不配置env参数,默认为空即可。

6.3.8 编译宏定义:

 可以参考6.3.7的方法传入编译宏,这里不再举例。

6.3.9 attach probe:

import time from pylcc.lbcBase import ClbcBase bpfPog = r""" #include "lbc.h"  SEC("kprobe/finish_task_switch") int j_wake_up_new_task2(struct pt_regs *ctx) {  struct task_struct* parent = (struct task_struct *)PT_REGS_PARM1(ctx);   bpf_printk("hello lcc2, parent: %d\n", _(parent->tgid));  return 0; }  char _license[] SEC("license") = "GPL"; """ class Cattach(ClbcBase): def __init__(self): super(Cattach, self).__init__("attach", bpf_str=bpfPog, attach=0) self.attachKprobe("j_wake_up_new_task2", "wake_up_new_task") while True: time.sleep(1) if __name__ == "__main__": attach = Cattach() pass
  1. 构造bpf的时候,配置attach=0,这样 j_wake_up_new_task2 就不会attach 到 finish_task_switch kprobe上去;
  2. attach 如果不配置,默认会 attach 到 finish_task_switch 上;

 attach api 列表如下:

def attachPerfEvent(self, function, attrD, pid=0, cpu=-1, group_fd=-1, flags=0): def attachAllCpuPerf(self, function, attrD, pid=-1, group_fd=-1, flags=0): def attachPerfEvents(self, function, attrD, pid, group_fd=-1, flags=0): def attachJavaSym(self, function, pid, symbol): def attachKprobe(self, function, symbol): def attachKretprobe(self, function, symbol): def attachUprobe(self, function, pid, binaryPath, offset=0): def attachUprobes(self, function, pid, binaryPath, offset=0): def attachUretprobe(self, function, pid, binaryPath, offset=0): def attachUretprobes(self, function, pid, binaryPath, offset=0): def traceUprobes(self, function, pid, fxpr): def traceUretprobes(self, function, pid, fxpr): def attachTracepoint(self, function, category, name): def attachRawTracepoint(self, function, name): def attachCgroup(self, function, fd): def attachNetns(self, function, fd): def attachXdp(self, function, ifindex): 

6.3.10、uprobe

 uprobe 关键是需要获取到 binaryPath、offset 这两个参数,现阶段可以通过surftrace 命令获取,参考2.9.1节,可以获取到环境中 bash readline对应参数是 "/usr/bin/bash", 0x8a870,故对应代码如下:

from signal import pause from pylcc.lbcBase import ClbcBase bpfPog = r""" #include "lbc.h" SEC("uprobe/*") int call_symbol(struct pt_regs *ctx) { bpf_printk("catch uprobe.\n"); return 0; } char _license[] SEC("license") = "GPL"; """ class CtestUprobe(ClbcBase): def __init__(self): super(CtestUprobe, self).__init__("tUprobe", bpf_str=bpfPog, attach=0) self.attachUprobe("call_symbol", -1, "/usr/bin/bash", 0x8a870) pause() if __name__ == "__main__": CtestUprobe() pass 

 通过 /sys/kernel/debug/tracing/trace_pipe 获取捕捉结果:

cat /sys/kernel/debug/tracing/trace_pipe <...>-114811 [000] .... 14635188.986989: 0: catch uprobe. <...>-113536 [000] .... 14635755.051790: 0: catch uprobe. <...>-113536 [001] .... 14635755.485620: 0: catch uprobe. <...>-113536 [001] .... 14635755.685864: 0: catch uprobe. <...>-113536 [001] .... 14635755.853171: 0: catch uprobe. <...>-113536 [001] .... 14635756.068934: 0: catch uprobe. 

 为了加速开发,可以采用traceUprobes这个api,编码习惯更接近surftrace

from signal import pause from pylcc.lbcBase import ClbcBase bpfPog = r""" #include "lbc.h" SEC("uprobe/*") int call_symbol(struct pt_regs *ctx) { bpf_printk("catch uprobe.\n"); return 0; } char _license[] SEC("license") = "GPL"; """ class CtraceUprobe(ClbcBase): def __init__(self): super(CtraceUprobe, self).__init__("traceUprobe", bpf_str=bpfPog, attach=0) self.traceUprobes("call_symbol", -1, "bash:readline") pause() if __name__ == "__main__": CtraceUprobe() pass 

效果是一样的。

6.3.11 追踪java应用(0.2.19支持)

 pylcc 可以监控java 符号级别的追踪,并可以追踪到部分传参的情况。以下面代码为例:

import java.io.*; import pack.bel; public class test {	public static void square_test(int i) {	System.out.print("val is ");	System.out.println(i * i);	}	public static void main(String[] args) {	bel b = new bel();	while (true) {	try {	Thread.currentThread().sleep(1000);	} catch (InterruptedException e) {	e.printStackTrace();	}	square_test(99);	System.out.println(b.po);	b.bel_test();	}	} } 

 要追踪square_test 函数调用以及入参,pylcc 代码实现如下:

__author__ = 'liaozhaoyan' import sys from signal import pause from pylcc.lbcBase import ClbcBase bpfPog = r""" #include "lbc.h" SEC("perf_event") int bpf_prog(struct bpf_perf_event_data *ctx) { bpf_printk("java function probe. arg1 :%d\n", ctx->regs.si); return 0; } char _license[] SEC("license") = "GPL"; """ class CjavaProbe(ClbcBase): def __init__(self, pid, sym): super(CjavaProbe, self).__init__("perfBp", bpf_str=bpfPog) self.attachJavaSym("bpf_prog", pid, sym) def loop(self): pause() if __name__ == "__main__": j = CjavaProbe(int(sys.argv[1]), sys.argv[2]) j.loop() pass 

 在目标运行环境下 执行

python javaProbe.py 71236 "Ltest;::square_test" 

 其中 71236 为java进程pid,后面为要追踪的java函数。查看trace_pipe,可以获取到以下信息:

 <...>-71237 [002] d... 14841309.908057: 0: java function probe. arg1 :99 <...>-71237 [002] d... 14841310.908244: 0: java function probe. arg1 :99 <...>-71237 [002] d... 14841311.908425: 0: java function probe. arg1 :99 <...>-71237 [002] d... 14841312.908611: 0: java function probe. arg1 :99 <...>-71237 [002] d... 14841313.908790: 0: java function probe. arg1 :99 <...>-71237 [002] d... 14841314.909012: 0: java function probe. arg1 :99 <...>-71237 [002] d... 14841315.909238: 0: java function probe. arg1 :99 <...>-71237 [002] d... 14841316.909423: 0: java function probe. arg1 :99 

6.4 pylcc 与 bcc 对比性能优势

 由于bcc 库内部集成了庞大的 LLVM/Clang 库,使其在使用过程中会遇到一些问题:

    1. 在每个工具启动时,都会占用较高的 CPU 和内存资源来编译 BPF 程序,在系统资源已经短缺的服务器上运行可能引起问题;
    1. 依赖于内核头文件包,必须将其安装在每个目标主机上。即便如此,如果需要内核中未 export 的内容,则需要手动将类型定义复制/粘贴到 BPF 代码中;

 以tools/pylcc/pytool/filelife.py工具为例,与bcc/tools/filelife功能一致的前提下,性能差异对比:

    1. lcc 由于不在本地编译,无本地cpu冲高过程;而采用bcc 可以监控到明显的CPU冲高过程

bcc-compile.png

    1. 运行阶段内存占用对比
pylcc bcc
rss(kb) 10352 92288
vmpeak(kb) 207444 369672
vmdata(kb) 201284 363484

 汇总对比如下表,同样的python应用,pylcc在cpu和mem等资源消耗均比bcc有较明显的优势

pylcc bcc
启动阶段
cpu占用
0% 50%+
运行阶段
rss占用
1 9

7 clcc

 clcc与pylcc原理基本一致,不同的是开发语言为C语言,属于静态语言版本,适用于bpf.c程序比较固定的场景

7.1 准备工作

基本要求

  • 能力要求:熟悉c,libpf开发特性,
  • python2.7 或者python3,coolbpf >=0.1.1,可以执行pip install -U coolbpf
  • 环境要求:可以访问pylcc.openanolis.cn或自己建远程编译服务
  • 编译要求:本地已安装gcc/make

7.2 coolbpf 命令说明

optional arguments: -h, --help show this help message and exit -f FILE, --file FILE set file to compile. -e ENV, --env ENV set compile env. -a ARCH, --arch ARCH set architecture. -v VER, --version VER set kernel version. -i INC, --include INC set include path. -o, --obj compile object file only.

 如要将hello.bpf.c 编译成hello.so,执行:

coolbpf -f hello.bpf.c

 编译成 hello.bpf.o,执行:

coolbpf -f hello.bpf.c -o

7.3 验证过程

 参考6.3的例程,先clone 代码 make:

git clone git@gitee.com:anolis/surftrace.git cd clcc make

 执行完编译后,就能编译出对应的可执行程序和对应的so,可以在对应路径下逐一验证,功能实现与pylcc实现一致。

7.3.1 hello

 实现和验证流程参考 pylcc hello的验证,实现了hello world 打印功能

7.3.2 event_out

 实现和验证流程参考 pylcc eventOut的验证,实现了往用户态吐数据功能

7.3.3 hash_map

 实现和验证流程参考 pylcc hashMaps的验证,实现了maps数据读取功能

7.3.3 call_stack

 实现和验证流程参考 pylcc callStack的验证,实现了打印内核调用栈功能

7.4 clcc 头文件说明

 头文件clcc.h保存在 include 路径下, 实现了so加载的主要功能,主要功能如下:

7.4.1 直接API

/*  * function name: clcc_init  * description: load an so  * arg1: so path to load  * return: struct clcc_struct *  */ struct clcc_struct* clcc_init(const char* so_path); /*  * function name: clcc_deinit  * description: release an so  * arg1: struct clcc_struct *p; struct clcc_struc will free in this function.  * return: None  */ void clcc_deinit(struct clcc_struct *p); /*  * function name: clcc_get_call_stack  * description: get call stack from table and stack id  * arg1: table id: from struct clcc_struct get_maps_id function.  * arg2: stack_id: from bpf kernel bpf_get_stackid function.  * arg3: pstack: struct clcc_call_stack, should be alloced at first, use in clcc_print_stack  * arg4: pclcc: setup from clcc_init function  * return: 0 if success.  */ int clcc_get_call_stack(int table_id, int stack_id, struct clcc_call_stack *pstack, struct clcc_struct *pclcc) /*  * function name: clcc_print_stack  * description: print call stack  * arg1: pstack: struct clcc_call_stack, stack to print, setup from clcc_get_call_stack.  * arg2: pclcc: setup from clcc_init function  * return: None.  */ void clcc_print_stack(struct clcc_call_stack *pstack, struct clcc_struct *pclcc) 

7.4.2 结构体API

  struct clcc_struct 是 clcc 最重要的结构体,封装libbpf的主要功能,结构定义如下:

struct clcc_struct{ /*  * member: handle  * description: so file file handle pointer, it should not be modified or accessed.  */ void* handle; /*  * member: status  * description: reserved.  */ int status; /*  * member: init  * description: install libbpf programme,  * arg1: print level, 0~3. -1:do not print any thing.  * arg2: attach, 0: do not attach, !0: attach  * return: 0 if success.  */ int (*init)(int log_level, int attach); /*  * member: exit  * description: uninstall libbpf programme,  * return: None.  */ void (*exit)(void); /*  * member: get_maps_id  * description: get map id from map name which quote in LBC_XXX().  * arg1: event: map name which quote in LBC_XXX(), eg: LBC_PERF_OUTPUT(e_out, struct data_t, 128), then arg is e_out.  * return: >=0, failed when < 0  */ int (*get_maps_id)(char* event); /*  * member: set_event_cb  * description: set call back function for perf out event.  * arg1: event id, get from get_maps_id.  * arg2: callback function when event polled.  * arg3: lost callback function when event polled.  * return: 0 if success.  */ int (*set_event_cb)(int id, void (*cb)(void *ctx, int cpu, void *data, unsigned int size), void (*lost)(void *ctx, int cpu, unsigned long long cnt)); /*  * member: event_loop  * description: poll perf out put event, usually used in pairs with set_event_cb function.  * arg1: event id, get from get_maps_id.  * arg2: timeout, unit seconds. -1 nevet timeout.  * return: 0 if success.  */ int (*event_loop)(int id, int timeout); /*  * member: map_lookup_elem  * description: lookup element by key.  * arg1: event id, get from get_maps_id.  * arg2: key point.  * arg3: value point.  * return: 0 if success.  */ int (*map_lookup_elem)(int id, const void *key, void *value); /*  * member: map_lookup_elem_flags  * description: lookup element by key.  * arg1: event id, get from get_maps_id.  * arg2: key point.  * arg3: value point.  * return: 0 if success.  */ int (*map_lookup_elem_flags)(int id, const void *key, void *value, unsigned long int); /*  * member: map_lookup_and_delete_elem  * description: lookup element by key then delete key.  * arg1: event id, get from get_maps_id.  * arg2: key point.  * arg3: value point.  * return: 0 if success.  */ int (*map_lookup_and_delete_elem)(int id, const void *key, void *value); /*  * member: map_delete_elem  * description: lookup element by key then delete key.  * arg1: event id, get from get_maps_id.  * arg2: key point.  * return: 0 if success.  */ int (*map_delete_elem)(int id, const void *key); /*  * member: map_update_elem  * description: update element by key.  * arg1: event id, get from get_maps_id.  * arg2: key point.  * arg3: value point.  * return: 0 if success.  */ int (*map_update_elem)(int id, const void *key, void *value); /*  * member: map_get_next_key  * description: walk keys from maps.  * arg1: event id, get from get_maps_id.  * arg2: key point.  * arg3: next key point.  * return: 0 if success.  */ int (*map_get_next_key)(int id, const void *key, void *next_key); /*  * member: attach_perf_event  * description: attach perf event.  * arg1: function name in bpf.c.  * arg2: perf event id.  * return: 0 if success.  */ int (*attach_perf_event)(const char* func, int pfd); /*  * member: attach_kprobe  * description: attach kprobe.  * arg1: function name in bpf.c.  * arg2: kprobe symbol.  * return: 0 if success.  */ int (*attach_kprobe)(const char* func, const char* sym); /*  * member: attach_kretprobe  * description: attach kprobe.  * arg1: function name in bpf.c.  * arg2: kprobe symbol.  * return: 0 if success.  */ int (*attach_kretprobe)(const char* func, const char* sym); /*  * member: attach_uprobe  * description: attach uprobe.  * arg1: function name in bpf.c.  * arg2: task pid  * arg3: binary_path.  * arg4: offset.  * return: 0 if success.  */ int (*attach_uprobe)(const char* func, int pid, const char *binary_path, unsigned long func_offset); /*  * member: attach_uretprobe  * description: attach uretprobe.  * arg1: function name in bpf.c.  * arg2: task pid  * arg3: binary_path.  * arg4: offset.  * return: 0 if success.  */ int (*attach_uretprobe)(const char* func, int pid, const char *binary_path, unsigned long func_offset); /*  * member: attach_tracepoint  * description: attach kprobe.  * arg1: function name in bpf.c.  * arg2: tp_category.  * arg3: tp_name.  * return: 0 if success.  */ int (*attach_tracepoint)(const char* func, const char *tp_category, const char *tp_name); /*  * member: attach_raw_tracepoint  * description: attach kprobe.  * arg1: function name in bpf.c.  * arg2: tp_name.  * return: 0 if success.  */ int (*attach_raw_tracepoint)(const char* func, const char *tp_name); /*  * member: attach_cgroup  * description: attach cgroup.  * arg1: function name in bpf.c.  * arg2: cgroup_fd.  * return: 0 if success.  */ int (*attach_cgroup)(const char* func, int cgroup_fd); /*  * member: attach_netns  * description: attach netns.  * arg1: function name in bpf.c.  * arg2: netns.  * return: 0 if success.  */ int (*attach_netns)(const char* func, int netns); /*  * member: attach_xdp  * description: attach xdp.  * arg1: function name in bpf.c.  * arg2: ifindex.  * return: 0 if success.  */ int (*attach_xdp)(const char* func, int ifindex); const char* (*get_map_types)(void); /*  * member: ksym_search  * description: get symbol from kernel addr.  * arg1: kernnel addr.  * return: symbol name and address information.  */ struct ksym* (*ksym_search)(unsigned long addr); };

8 附录、

8.1、lbc.h头文件已定义的信息

#ifndef LBC_LBC_H #define LBC_LBC_H #define _LINUX_POSIX_TYPES_H #define __ASM_GENERIC_POSIX_TYPES_H #define PERF_MAX_STACK_DEPTH 127 #define BPF_F_FAST_STACK_CMP(1ULL << 9) #define KERN_STACKID_FLAGS (0 | BPF_F_FAST_STACK_CMP) #define USER_STACKID_FLAGS (0 | BPF_F_FAST_STACK_CMP | BPF_F_USER_STACK) typedef unsigned long long u64; typedef signed long long s64; typedef unsigned int u32; typedef signed int s32; typedef unsigned short u16; typedef signed short s16; typedef unsigned char u8; typedef signed char s8; enum { BPF_ANY = 0, /* create new element or update existing */ BPF_NOEXIST = 1, /* create new element if it didn't exist */ BPF_EXIST = 2, /* update existing element */ BPF_F_LOCK = 4, /* spin_lock-ed map_lookup/map_update */ }; #define LBC_PERF_OUTPUT(MAPS, CELL, ENTRIES) \ struct bpf_map_def SEC("maps") MAPS = { \ .type = BPF_MAP_TYPE_PERF_EVENT_ARRAY, \ .key_size = sizeof(int), \ .value_size = sizeof(s32), \ .max_entries = ENTRIES, \ } #define LBC_HASH(MAPS, KEY_T, VALUE_T, ENTRIES) \ struct bpf_map_def SEC("maps") MAPS = { \ .type = BPF_MAP_TYPE_HASH, \ .key_size = sizeof(KEY_T), \ .value_size = sizeof(VALUE_T), \ .max_entries = ENTRIES, \ } #define LBC_LRU_HASH(MAPS, KEY_T, VALUE_T, ENTRIES) \ struct bpf_map_def SEC("maps") MAPS = { \ .type = BPF_MAP_TYPE_LRU_HASH, \ .key_size = sizeof(KEY_T), \ .value_size = sizeof(VALUE_T), \ .max_entries = ENTRIES, \ } #define LBC_PERCPU_HASH(MAPS, KEY_T, VALUE_T, ENTRIES) \ struct bpf_map_def SEC("maps") MAPS = { \ .type = BPF_MAP_TYPE_PERCPU_HASH, \ .key_size = sizeof(KEY_T), \ .value_size = sizeof(VALUE_T), \ .max_entries = ENTRIES, \ } #define LBC_LRU_PERCPU_HASH(MAPS, KEY_T, VALUE_T, ENTRIES) \ struct bpf_map_def SEC("maps") MAPS = { \ .type = BPF_MAP_TYPE_LRU_PERCPU_HASH, \ .key_size = sizeof(KEY_T), \ .value_size = sizeof(VALUE_T), \ .max_entries = ENTRIES, \ } #define LBC_STACK(MAPS, ENTRIES) \ struct bpf_map_def SEC("maps") MAPS = { \ .type = BPF_MAP_TYPE_STACK_TRACE, \ .key_size = sizeof(u32), \ .value_size = PERF_MAX_STACK_DEPTH * sizeof(u64), \ .max_entries = ENTRIES, \ } #define _(P) ({typeof(P) val = 0; bpf_probe_read((void*)&val, sizeof(val), (const void*)&P); val;}) #include "vmlinux.h" #include <linux/types.h> #include <bpf/bpf_helpers.h> #include <bpf/bpf_core_read.h> #include <bpf/bpf_tracing.h> #ifndef NULL #define NULL ((void*)0) #endif #ifndef ntohs #define ntohs(x) (0xff00 & x << 8) \ |(0x00ff & x >> 8) #endif #ifndef ntohl #define ntohl(x) (0xff000000 & x << 24) \ |(0x00ff0000 & x << 8) \ |(0x0000ff00 & x >> 8) \ |(0x000000ff & x >> 24) #endif #ifndef ntohll #define ntohll(x) ((((long long)ntohl(x))<<32) + (ntohl((x)>>32))) #endif #define BPF_F_CURRENT_CPU 0xffffffffULL #endif //LBC_LBC_H

9、生成surftrace db 方法

9.1、准备工作

 以解析anolis发行版,rpm包名:kernel-debug-debuginfo-4.19.91-23.4.an8.x86_64.rpm为例。需要准备好一台x86_64实例,确保该实例可以访问上面的url。

9.1.1、环境上已经安装了docker,

  下载容器镜像

docker pull liaozhaoyan/dbhive

9.1.2、在host机器上准备好存放目录,目录结构如下:

# tree tree . └── x86_64 ├── btf │   └── anolis ├── db │   └── anolis ├── funcs │   └── anolis ├── head │   └── anolis ├── pack │   └── anolis └── vmlinux └── anolis

 1.顶级目录可以定义,本例定义为dbhive;

 2.一级目录为arch名,当前容器仅支持x86_64和aarch64

 3.二级目录为各个功能组目录,可以执行以下命令批量创建:

export RELEASE=anolis mkdir -p btf/$RELEASE db/$RELEASE funcs/$RELEASE head/$RELEASE pack/$RELEASE vmlinux/$RELEASE

 4.三级目录是发行版的名字,已经在步骤3中创建好了

9.1.3、拉起容器

docker run --net=host --privileged=true -v /root/1ext/vmhive:/home/vmhive/ --name dbhived -itd liaozhaoyan/dbhive /usr/sbin/init

9.1.4、进入容器里面执行生成db文件动作:

docker exec -it dbhived bash cd /home/dbhive/ python3 getVmlinux.py proc kernel-debug-debuginfo-4.19.91-23.4.an8.x86_64.rpm, x86_64 4728267 blocks strip: /home/vmhive/x86_64/btf/anolis/stlpkyQL: warning: allocated section `.BTF' not in segment gen /home/vmhive/x86_64/db/anolis/info-debuginfo-4.19.91-23.4.an8.x86_64.db No symbol "__int128" in current context. failed to parse type __int128 This context has class, struct or enum irte, not a union. ……

 此时开始解析所有的内核符号,解析完毕以后,会在host侧的vmhive/x86_64/db/anolis 目录下生成用于surftrace使用的db文件。

About

surftrace is a tool that allows you to surf the linux kernel

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 5

Languages