Delimited payload token filter
The older name delimited_payload_filter
is deprecated and should not be used with new indices. Use delimited_payload
instead.
Separates a token stream into tokens and payloads based on a specified delimiter.
For example, you can use the delimited_payload
filter with a |
delimiter to split the|1 quick|2 fox|3
into the tokens the
, quick
, and fox
with respective payloads of 1
, 2
, and 3
.
This filter uses Lucene’s DelimitedPayloadTokenFilter.
A payload is user-defined binary data associated with a token position and stored as base64-encoded bytes.
Elasticsearch does not store token payloads by default. To store payloads, you must:
- Set the
term_vector
mapping parameter towith_positions_payloads
orwith_positions_offsets_payloads
for any field storing payloads. - Use an index analyzer that includes the
delimited_payload
filter
You can view stored payloads using the term vectors API.
The following analyze API request uses the delimited_payload
filter with the default |
delimiter to split the|0 brown|10 fox|5 is|0 quick|10
into tokens and payloads.
GET _analyze
{ "tokenizer": "whitespace", "filter": ["delimited_payload"], "text": "the|0 brown|10 fox|5 is|0 quick|10" }
The filter produces the following tokens:
[ the, brown, fox, is, quick ]
Note that the analyze API does not return stored payloads. For an example that includes returned payloads, see Return stored payloads.
The following create index API request uses the delimited-payload
filter to configure a new custom analyzer.
PUT delimited_payload
{ "settings": { "analysis": { "analyzer": { "whitespace_delimited_payload": { "tokenizer": "whitespace", "filter": [ "delimited_payload" ] } } } } }
delimiter
- (Optional, string) Character used to separate tokens from payloads. Defaults to
|
. encoding
- (Optional, string) Data type for the stored payload. Valid values are:
float
- (Default) Float
identity
- Characters
int
- Integer
To customize the delimited_payload
filter, duplicate it to create the basis for a new custom token filter. You can modify the filter using its configurable parameters.
For example, the following create index API request uses a custom delimited_payload
filter to configure a new custom analyzer. The custom delimited_payload
filter uses the +
delimiter to separate tokens from payloads. Payloads are encoded as integers.
PUT delimited_payload_example
{ "settings": { "analysis": { "analyzer": { "whitespace_plus_delimited": { "tokenizer": "whitespace", "filter": [ "plus_delimited" ] } }, "filter": { "plus_delimited": { "type": "delimited_payload", "delimiter": "+", "encoding": "int" } } } } }
Use the create index API to create an index that:
- Includes a field that stores term vectors with payloads.
- Uses a custom index analyzer with the
delimited_payload
filter.
PUT text_payloads
{ "mappings": { "properties": { "text": { "type": "text", "term_vector": "with_positions_payloads", "analyzer": "payload_delimiter" } } }, "settings": { "analysis": { "analyzer": { "payload_delimiter": { "tokenizer": "whitespace", "filter": [ "delimited_payload" ] } } } } }
Add a document containing payloads to the index.
POST text_payloads/_doc/1
{ "text": "the|0 brown|3 fox|4 is|0 quick|10" }
Use the term vectors API to return the document’s tokens and base64-encoded payloads.
GET text_payloads/_termvectors/1
{ "fields": [ "text" ], "payloads": true }
The API returns the following response:
{ "_index": "text_payloads", "_id": "1", "_version": 1, "found": true, "took": 8, "term_vectors": { "text": { "field_statistics": { "sum_doc_freq": 5, "doc_count": 1, "sum_ttf": 5 }, "terms": { "brown": { "term_freq": 1, "tokens": [ { "position": 1, "payload": "QEAAAA==" } ] }, "fox": { "term_freq": 1, "tokens": [ { "position": 2, "payload": "QIAAAA==" } ] }, "is": { "term_freq": 1, "tokens": [ { "position": 3, "payload": "AAAAAA==" } ] }, "quick": { "term_freq": 1, "tokens": [ { "position": 4, "payload": "QSAAAA==" } ] }, "the": { "term_freq": 1, "tokens": [ { "position": 0, "payload": "AAAAAA==" } ] } } } } }