Language: mono-sorted ${\sf FOL}(=,\in,S)$, where $S$ is a unary predicate standing for ".. is a stage".
Axioms:
Extensionality: $\forall z \, (z \in x \leftrightarrow z \in y) \to x=y$
Positive Separation: $[\exists y \in A: \phi, \to \exists x \forall y (y \in x \leftrightarrow y \in A: \phi)]$; if $x$ doesn't occur in formula $\phi$.
No Empty set: $\forall x \exists y: y \in x$
Acyclicity: $n=1,2,3, \ldots; \\ \neg \, \exists x_0, \ldots, \exists x_n: x_0 \in \cdots \in x_n \land x_0 = x_n$
Existence: $\exists x: S(x)$
Stages: $\forall x: S(x) \to \exists y: S(y) \land x=\mathcal P(y)$
Staging: $\forall x \exists y: S(y) \land x \in y$
Multiplicity: $\exists x \exists y \exists z : S(x) \land y \in x \land z \in x \land y \neq z$
Where $\mathcal P$ is the powerset operator.
Is this theory consistent?
Does this theory prove infinity?
Is it consistent with Choice?