During my research, I came across this question.
Let $p>11$ a prime number with $a=\text{card}\{(x,y) \in \mathbb Z/ p \mathbb Z: y^2=x^3+1\}$ and $b=\dfrac 1 {((p-1)/2)! \times ((p-1)/3)! \times ((p-1)/6)!} \mod p$ when $p \mod 3=1$.
Is it true that if $p \mod 3=1$ then $a \in \{b,p-b, \min\{b,p-b\}+p\}$ else $a=p$?