3
$\begingroup$

During my research, I came across this question.

Let $p>11$ a prime number with $a=\text{card}\{(x,y) \in \mathbb Z/ p \mathbb Z: y^2=x^3+1\}$ and $b=\dfrac 1 {((p-1)/2)! \times ((p-1)/3)! \times ((p-1)/6)!} \mod p$ when $p \mod 3=1$.

Is it true that if $p \mod 3=1$ then $a \in \{b,p-b, \min\{b,p-b\}+p\}$ else $a=p$?

$\endgroup$
2
  • 3
    $\begingroup$ Yes. You can find a formula for the number of points on $E : y^{2} + x^{3} + 1$ mod $p$ in Example 4.4 of Section V.4 of Silverman's Arithmetic of Elliptic Curves. (This is on pages 143-144 in the 1st edition.) If $p \equiv 1 \pmod{3}$, the quantity $a$ is congruent mod $p$ to the binomial coefficient $\binom{(p-1)/2}{(p-1)/3}$. $\endgroup$ Commented May 6 at 17:54
  • $\begingroup$ Why $((p-1)/2)! \mod p \in \{p-1,1\}$ when $p \mod 3=1$? $\endgroup$ Commented May 6 at 18:00

1 Answer 1

7
$\begingroup$

Elliptic curves of the form $y^2=x^3+b$ were studied by Schrutka in the article Ein Beweis für die Zerlegbarkeit der Primzahlen von der Form $6n +1$ in ein einfaches und ein dreifaches Quadrat. He used only elementary arguments. In particular he has proven congruences for involved numbers.

Schrutka used sums in the form $$\sum_{x=1}^{p-1}\left(\frac{x^4+n x}{p}\right),$$ but they are essentually the same as the sums $$\sum_{x=1}^{p-1}\left(\frac{x^3+b}{p}\right),$$ because $$\sum_{x=1}^{p-1}\left(\frac{x^4+n x}{p}\right)=\sum_{x=1}^{p-1}\left(\frac{x^{-4}+n x^{-1}}{p}\right)=\sum_{x=1}^{p-1}\left(\frac{1+n x^3}{p}\right)=\left(\frac{n}{p}\right) \sum_{x=0}^{p-1}\left(\frac{x^3+n^{-1}}{p}\right).$$

Related questions are

Direct proof of special case of Hasse's theorem for elliptic curves and

Congruence for the number of points in the elliptic curve $y^2=x^3+b\pmod p.$

$\endgroup$
6
  • $\begingroup$ Your formula is the same of Jeremy Rouse, isn't the same of here. $\endgroup$ Commented May 6 at 18:41
  • 2
    $\begingroup$ @Dattier You need only $(((p-1)/2)!)^2=\pm 1\pmod p$. But this formula follows from Wilson's theorem. $\endgroup$ Commented May 6 at 18:48
  • $\begingroup$ It's not trivial a relation between $$ \#E(\mathbb F_p) \equiv p+1-\binom{\frac{p-1}2}{\frac{p-1}3}\pmod{p}$$ and $$\dfrac 1 {((p-1)/2)! \times ((p-1)/3)! \times ((p-1)/6)!} \mod p$$ $\endgroup$ Commented May 6 at 18:53
  • $\begingroup$ I have forgotten, the infinite point. $\endgroup$ Commented May 6 at 19:01
  • $\begingroup$ Sorry, I don't understand your comment. My argument is the following: $$\dfrac {((p-1)/2)! } {((p-1)/3)! \times ((p-1)/6)!}\equiv \pm \dfrac 1 {((p-1)/2)! \times ((p-1)/3)! \times ((p-1)/6)!} \mod p,$$ and in your question $a \in \{b,p-b, \min\{b,p-b\}+p\}$. $\endgroup$ Commented May 6 at 19:02

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.