Let
- $T(n,k)$ be A131823, i.e., integer coefficients whose ordinary generating function for the $n$-th row is $ \displaystyle{ \prod_{i=0}^{n-1} (1 + x^{2^i})^{n-i} }$.
- $\operatorname{wt}(n)$ be A000120, i.e., number of ones in the binary expansion of $n$. Here $$ \operatorname{wt}(2n+1) = \operatorname{wt}(n) + 1, \\ \operatorname{wt}(2n) = \operatorname{wt}(n), \\ \operatorname{wt}(0) = 0. $$
I conjecture that for $ 0\leqslant k \leqslant 2^{n+1} - (n+1) $ we have $$ \sum\limits_{j=0}^{k} \binom{n+j}{j} (-1)^{\operatorname{wt}(k-j)} = T(n,k). $$
Here is the PARI/GP program to check it numerically:
T1(n,k)=local(A=[1]); if(n==0, 1, for(i=0, n-1, A=concat(Vec((Polrev(A)+O(x^(#A+i)))/(1-x)), Vec(O(x^(#A))+Pol(Vec(Ser(A)/(1-x)))))); A[k+1]) T2(n,k) = my(A = 1); (-1)^wt(k) + sum(j=1, k, (A*=((n+j)/j))*(-1)^wt(k-j)) test(n) = vector(2^(n+1)-(n+1), i, T2(n,i-1)) == vector(2^(n+1)-(n+1), i, T1(n,i-1)) Is there a way to prove it?