Let $\mathbb{X}, \mathbb{Y} \subset \mathbb{R}^d$ be finite sets. Suppose random vectors $X \in \mathbb{X}$ and $Y \in \mathbb{Y}$ are sampled according to a joint distribution $\mathbb{P}_{XY}$. Additionally, define a random vector $\hat{Y}$, which has the same marginal distribution as $Y$, but is independent of $X$.
We know that the following inequality holds: $$ \mathbb{E}\left[X^\top Y - \mathbb{E}\left[X^\top \hat{Y} \mid X\right]\right]^2 \leq d \cdot \mathbb{E}\left[ \left(X^\top \hat{Y} - \mathbb{E}\left[X^\top \hat{Y} \mid X\right]\right)^2 \right], $$ which itself is a direct consequence of this inequality: $$ \mathbb{E}\left[X^\top Y\right]^2 \leq d \cdot \mathbb{E}\left[ \left(X^\top \hat{Y}\right)^2 \right]. $$ I think the following inequality also holds: $$ \mathbb{E}\left[|X^\top Y| - \mathbb{E}\left[|X^\top \hat{Y}| \mid X\right]\right]^2 \leq d \cdot \mathbb{E}\left[ \left(|X^\top \hat{Y}| - \mathbb{E}\left[|X^\top \hat{Y}| \mid X\right]\right)^2 \right], $$ but I can't prove it, so I'm looking for a proof!
P.s. I can provide the proof of the other inequalities if needed.