1
$\begingroup$

On the wikipedia page of the Nevanlinna-Pick theorem the following claim appears:

Let $\lambda_1,\lambda_2,f(\lambda_1),f(\lambda_2)\in\mathbb{D}$. The matrix $P_{ij}:=\frac{1-f(\lambda_i)\overline{f(\lambda_j)}}{1-\lambda_i\overline{\lambda_j}}$ is positive semidefinite if and only if the following inequality holds: $\frac{|f(\lambda_1)-f(\lambda_2)|}{|\lambda_1-\lambda_2|}\leq \frac{|1-\overline{f(\lambda_1)}f(\lambda_2)|}{|1-\overline{\lambda_1}\lambda_2|}$.

My first question is how to see this equivalence? In particular the Sylvester criterion implies that $P$ is positive semi definite if and only if $\mathrm{det}(P)\geq 0$, which I was hoping would clarify this, but it didn’t.

My second question is- Does a similar equivalence holds for a larger set of points? That is, let $\{\lambda_i\}_{i=1}^n, \{f(\lambda_i)\}_{i=1}^n\subseteq \mathbb{D}$, then the matrix $P_{ij}:=\frac{1-f(\lambda_i)\overline{f(\lambda_j)}}{1-\lambda_i\overline{\lambda_j}}$ is positive semidefinite if and only if for every $i\neq j\in\{1,\ldots, n\}$,$\frac{|f(\lambda_i)-f(\lambda_j)|}{|\lambda_i-\lambda_j|}\leq \frac{|1-\overline{f(\lambda_i)}f(\lambda_j)|}{|1-\overline{\lambda_i}\lambda_j|}$ ?

Many thanks to all the helpers!

$\endgroup$

1 Answer 1

1
$\begingroup$

About your first question this is exactly the positivity of the determinant of the Pick matrix. That is because if $\lambda_1,\lambda_2 \in \mathbb{D}$ then \begin{align*} \det(P) & = \begin{bmatrix} \frac{1-|f(\lambda_1)|^2}{1-|\lambda_1|^2} & \frac{1-\overline{f(\lambda_1)}f(\lambda_2)}{1-\overline{\lambda_1}\lambda_2} \\\frac{1-\overline{f(\lambda_2)}f(\lambda_1)}{1-\overline{\lambda_2}\lambda_1} & \frac{1-|f(\lambda_2)|^2}{1-|\lambda_2|^2} \end{bmatrix} \\ & = \frac{1-|f(\lambda_1)|^2}{1-|\lambda_1|^2}\frac{1-|f(\lambda_2)|^2}{1-|\lambda_2|^2} - \Big| \frac{1-\overline{f(\lambda_2)}f(\lambda_1)}{1-\overline{\lambda_2}\lambda_1} \Big|^2 \\ & = \frac{|1-\overline{f(\lambda_1)}f(\lambda_2)|^2-|f(\lambda_1)-f(\lambda_2)|^2}{|1-\overline{\lambda_1}\lambda_2|^2-|\lambda_1-\lambda_2|^2} -\Big| \frac{1-\overline{f(\lambda_2)}f(\lambda_1)}{1-\overline{\lambda_2}\lambda_1} \Big|^2. \end{align*} The key is to use the identity $$ 1-\Big| \frac{a-b}{1-\overline{a}b} \Big|^2 = \frac{(1-|a|^2)(1-|b|^2)}{|1-\overline{a}b|^2}. $$

About your second question, it is not true that if $f$ is a contraction on the finite set then the Pick matrix is positive. (This is asking that all $2\times2$ principle submatrices are positive semidefinite, implying that the matrix is positive semidefinite). For a concrete counterexample take $\lambda_1=0,\lambda_2=-r,\lambda_3=r, f(0)=0, f(-r)=-r, f(r)=r/2$. Then the pick matrix is $$ \begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & \frac{1+r^2/2}{1+r^2} \\ 1 & \frac{1+r^2/2}{1+r^2} & \frac{1-r^2/4}{1-r^2} \end{bmatrix} $$ which has determinant $-\frac{r^4}{4(1+r^2)^2} <0 $ but all $2\times2$ principle submatrices have non negative determinant.

$\endgroup$
1
  • $\begingroup$ Thank you! This is a very illuminating example. $\endgroup$ Commented Mar 27, 2024 at 21:06

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.