Let $a_c(n)$ be the number of ways to partition a positive integer $n$ where each even part comes in $c$ colors. Then, we can supply the generating function $$\sum_{n\geq0}a_c(n)q^n=\prod_{k\geq1}\frac1{(1-q^k)(1-q^{2k})^{c-1}}.$$ In particular, $a_1(n)=p(n)$ is the usual number of (unrestricted) partitions of $n$; $a_2(n)$ is the so-called cubic partitions of $n$.
Example. $a_2(2)=\#\{{\color{red}2},2,11\}=3, a_2(4)=\#\{{\color{red}4},4,31,{\color{red}{22}},{\color{red}2}2,22,{\color{red}2}11,211,1111\}=9$.
Experiments suggest the below congruences.
QUESTION. Are these statements true?
$\bullet$ $a_2(3n+2)\equiv0\pmod 3$
$\bullet$ $a_4(5n+4)\equiv0\pmod 5$
$\bullet$ $a_3(7n+4)\equiv0\pmod 7$
$\bullet$ $a_5(11n+10)\equiv0\pmod{11}$.