0
$\begingroup$

Let $T>0$ and $p \in [1, \infty)$. Let $f \in L^p ([0, T] \times {\mathbb R}^d)$. By a theorem in this thread, there is a Lebesgue null subset $N$ of $[0, T]$ such that $f(t, \cdot)$ is Lebesgue measurable and that $f(t, \cdot) \in L^p ({\mathbb R}^d)$ for all $t \in [0, T] \setminus N$. For $t \in N$, we don't know the measurability and thus the integrability of $f(t, \cdot)$. However, we can re-define $f$ such that $f(t, \cdot) \equiv 0$ for all $t \in N$. Then writing $f(t, \cdot) \in L^p ({\mathbb R}^d)$ is rigorously valid for every $t \in [0, T]$.

Is there a modification of $f$ on a Lebesgue null subset of $[0, T]$ such that the map $$ F: [0, T] \to L^p ({\mathbb R}^d), t \mapsto f(t, \cdot) $$ is Bochner measurable?

Intuitively, the answer is positive. But I don't know how to prove it...

$\endgroup$
1
  • $\begingroup$ It seems a simpler proof can be found here. $\endgroup$ Commented Aug 15, 2023 at 23:47

2 Answers 2

0
$\begingroup$

Let

  • $(X, \mathcal A, \mu)$ and $(Y, \mathcal B, \nu)$ be complete $\sigma$-finite measure spaces, and $(E, | \cdot |)$ a Banach space.
  • $S (X)$ the space of $\mu$-simple functions from $X$ to $E$.
  • $\mathcal C :=\mathcal A \otimes \mathcal B$ the product $\sigma$-algebra of $\mathcal A$ and $\mathcal B$.
  • $\lambda := \mu \otimes \nu$ the product measure of $\mu$ and $\nu$.

Here we use Bochner integral. Then we have

Let $p \in [1, \infty)$.

  • Lemma 1 Then $$ \overline{S(X) \otimes S(Y)} = L^p(X \times Y), $$ where the closure is with respect to the norm in $L^p(X \times Y)$. Here $S (X) \otimes S(Y)$ is identified with a subspace of $L^p(X \times Y)$ through the natural embedding $$ f \otimes g \mapsto \big( (x,y) \mapsto f(x) g(y) \big). $$

  • Lemma 2 Let $(f_n) \subset S (X \times Y)$ be a Cauchy sequence in $L^p(X \times Y)$ that converges $\lambda$-a.e. to $f$. Then there is a subsequence $\varphi$ of $\mathbb N$ such that for $\mu$-a.e. $x \in X$, we have $(f_{\varphi (n)} (x, \cdot))_n \subset S (Y)$ is a Cauchy sequence in $L^p (Y)$ and converges to $f(x, \cdot)$ both $\nu$-a.e. and in $L^p (Y)$.

Let $X := [0, T]$ and $Y := \mathbb R^d$. Let $\mathcal A, \mathcal B$ be the corresponding Lebesgue $\sigma$-algebras of $X$ and $Y$. Let $\mu, \nu$ be the corresponding Lebesgue measures on $X, Y$.

By Lemma 1, there is a sequence of $(f_n) \subset L^p(X \times Y)$ with $f_n = g_n h_n$ for some $g_n \in S (X)$ and $h_n \in S (Y)$ such that $\|f_n-f\|_{L^p(X \times Y)} \to 0$. Clearly, $(f_n)$ is a Cauchy sequence in $S(X \times Y)$. Also, each $f_n$ is of the form $$ f_n (t, x) = \sum_{k=1}^{\varphi_n} e_{n, k} 1_{A_{n, k}} (t) 1_{B_{n, k}} (x) \quad \forall t\in X, x \in Y, $$ for some $e_{n, k} \in \mathbb R$ and $A_{n, k} \in \mathcal A, B_{n, k} \in \mathcal B$ such that $\mu(A_{n, k}) + \nu (B_{n, k}) < \infty$. Then $f_n (t, \cdot) \in L^p(Y)$ for all $t \in X$. Let $$ F_n : X \to L^p (Y), t \mapsto f_n (t, \cdot) \quad \forall n \in \mathbb N. $$

Clearly, $F_n \in S(X, L^p(Y)) \subset L^p(X, L^p(Y))$ for all $n \in \mathbb N$. By Fubini's theorem, $$ \begin{align*} \| F_n - F_m\|_{L^p(X, L^p(Y))}^p &= \int_0^T \mathrm d t \, \|F_n (t) - F_m (t)\|_{L^p (Y)}^p \\ &= \|f_n-f_m\|_{L^p(X \times Y)}^p. \end{align*} $$

Then $(F_n)$ is a Cauchy sequence in the Banach space $L^p(X, L^p(Y))$. Then there is $F \in L^p(X, L^p(Y))$ such that $\|F_n-F\|_{L^p(X, L^p(Y))} \to 0$.

Convergence in $L^p$ implies a.e. convergence of a subsequence, so WLOG we assume $f_n \to f$ $\lambda$ a.e. and $F_n \to F$ $\mu$-a.e. By Lemma 2, there is a subsequence $\varphi$ of $\mathbb N$ su for $\mu$-a.e. $t \in X$ we have $$ \|f_{\varphi (n)} (t, \cdot)-f(t, \cdot) \|_{L^p (Y)} \xrightarrow{n \to \infty} 0. $$

On the other hand, for $\mu$-a.e. $t \in X$ we have $$ \|f_n (t, \cdot) - F (t)\|_{L^p(Y)} =\|F_n (t) - F (t)\|_{L^p(Y)} \xrightarrow{n \to \infty} 0. $$

It follows that for $\mu$-a.e. $t \in X$ we have $$ \|f (t, \cdot) - F(t) \|_{L^p (Y)} = 0. $$

The claim then follows.

$\endgroup$
0
$\begingroup$

Inspired by two answers in this thread, I'm able to drop the assumption on the integrability of $f$, i.e.,

Theorem Let $p \in [1, \infty)$ and $f \in L^0 (Z)$ such that $$ f(x, \cdot) \in L^p(Y) \quad \text{for}\quad \mu \text{-a.e. } x\in X. \tag{$*$} $$ Then $f \in L^0(X, L^p(Y))$.

My below proof adds nothing new to the other answers. I just fill in the details to fix the ideas.


Below we use Bochner measurability and Bochner integral. Let

  • $(X, \mathcal A, \mu)$ and $(Y, \mathcal B, \nu)$ be complete $\sigma$-finite measure spaces,
  • $(E, | \cdot |)$ a Banach space,
  • $S (X)$ the space of $\mu$-simple functions from $X$ to $E$,
  • $L^0 (X)$ the space of $\mu$-measurable functions from $X$ to $E$,
  • $L^1 (X)$ the space of $\mu$-integrable functions from $X$ to $E$,
  • $Z := X \times Y$,
  • $\mathcal C :=\mathcal A \otimes \mathcal B$ the product $\sigma$-algebra of $\mathcal A$ and $\mathcal B$,
  • $\lambda := \mu \otimes \nu$ the product measure of $\mu$ and $\nu$,
  • $(Z, \overline{\mathcal C}, \overline{\lambda})$ the completion of $(Z, \mathcal C, \lambda)$.

First, we have

Lemma 1 If $f \in L^0 (Z)$ then $f(x, \cdot) \in L^0(Y)$ for $\mu$-a.e. $x\in X$.

Lemma 2 Let $f \in S (Z)$ and $\varepsilon>0$. There is $f_\varepsilon \in S(Z)$ of the form $$ f_\varepsilon (x, y) = \sum_{i,j=1}^{n} e_{i,j} 1_{A_{i}} (x) 1_{B_{j}} (y) $$ such that

  • $(A_{i})_{i=1}^{n}, (B_{j})_{j=1}^{n}$ are measurable partitions of $X,Y$ respectively,
  • $e_{ij} \in E$ and $\mu(A_i)+\nu(B_j) < \infty$ for all $i,j \in \{1, \ldots, n\}$,
  • $\|f-f_\varepsilon\|_{L^1(Z)} < \varepsilon$, and
  • $\lambda (\{f \neq f_\varepsilon\}) < \varepsilon$.

By modifying $f$ on a null set, we can assume $(*)$ for all $x\in X$.

There is a sequence $(g_n) \subset S(X\times Y)$ such that $\|g_n-f\|_{L^1(Z)} < \frac{1}{n}$ and $g_n \to f$ $\lambda$-a.e. For each $n$, let $f_n$ be the approximating function of $g_n$ given by Lemma 2 such that $\|f_n-g_n\|_{L^1(Z)} < 2^{-n}$ and $\lambda (\{f_n \neq g_n\}) < 2^{-n}$. It's easy to see that $\|f_n-f\|_{L^1(Z)} < \frac{2}{n}$ and $f_n \to f$ $\lambda$-a.e. Let $$ f_n (x, y) = \sum_{i,j=1}^{\varphi_n} e_{n, i,j} 1_{A_{n, i}} (x) 1_{B_{n, j}} (y). $$

  1. First, we consider the case $\nu (Y) < \infty$ and $\alpha := \sup_{(x, y) \in X \times Y} |f (x, y)| +1< \infty$. Let $$ e'_{n,i,j} := \begin{cases} e_{n, i, j} &\text{if} \quad |e_{n, i, j}| \le \alpha, \\ 0 &\text{otherwise}, \end{cases} $$ and $$ f'_n (x, y) := \sum_{i,j=1}^{\varphi_n} e'_{n, i,j} 1_{A_{n, i}} (x) 1_{B_{n, j}} (y). $$

Clearly, $f'_n \in S(Z)$ and $f'_n \to f$ $\lambda$-a.e. I already proved that for $\mu$-a.e. $x \in X$: $$ \begin{align*} f'_n(x, \cdot) \xrightarrow{n \to \infty} f(x, \cdot) \quad \nu \text{-a.e.} \end{align*} $$

By dominated convergence theorem, for $\mu$-a.e. $x \in X$: $\|f'_n(x, \cdot) - f(x, \cdot) \|_{L^p(Y)} \to 0$. Let $$ F_n: X \to L^p(Y), x \mapsto f'_n(x, \cdot), \\ F: X \to L^p(Y), x \mapsto f(x, \cdot). $$

Clearly, $F_n \in S(X, L^p(Y))$ for all $n$. The $\mu$-a.e. limit of a sequence of $\mu$-measurable functions is again $\mu$-measurable. It suffices to prove that for $\mu$-a.e. $x \in X$: $\|F_n (x)-F(x)\|_{L^p(Y)} \to 0$, which we have already done.

  1. Second, we consider the case $\alpha < \infty$. Because $(Y, \mathcal B, \nu)$ is $\sigma$-finite, there is a countable measurable partition $(Y_n)$ of $Y$ with $\sup_n \nu(Y_n) < \infty$. We apply part (1) for each function $f_n := f1_{X \times Y_n}$ and get $f_n \in L^0 (Z)$. Clearly, $\sum_{k=1}^n f_k \to f$ everywhere. The $\lambda$-a.e. limit of a sequence of $\lambda$-measurable functions is again $\lambda$-measurable. Then $f \in L^0 (Z)$.

  2. Finally, we also drop the assumption $\alpha < \infty$. Let $Z_n := \{n \le |f| < n+1 \}$ for $n \in \mathbb N$. It is not necessarily true that $Z_n \in \cal C$, but we always have $Z_n \in \overline{\cal C}$. Clearly, $(Z_n)_n$ is a partition of $Z$. We apply part (2) for each function $f_n := f1_{Z_n}$ and get $f_n \in L^0 (Z)$. Clearly, $\sum_{k=1}^n f_k \to f$ everywhere. The $\lambda$-a.e. limit of a sequence of $\lambda$-measurable functions is again $\lambda$-measurable. Then $f \in L^0 (Z)$.

This completes the proof!

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.