2
$\begingroup$

Let $a,b \in \mathbb R$, $R \ge 0$, and $c > 0$. Define $C := \{(x,y) \in \mathbb R^2 \mid x^2 + y^2 \le 1,\,x^2 + c y^2 \le R^2\}$, and set

$$ \alpha := \sup_{(x,y) \in C} ax + b y. $$

Question. In terms of $a,b,c,R$, is there an analytic formula for $\alpha$ ?

Some special cases

  • If $c=1$, then $C = \{z \in \mathbb R^2 \mid \|z\|_2 \le R'\}$, where $R' := \min(1,R)$. Thus, $\alpha = R'\sqrt{a^2+b^2}$.
  • If $a=0$, then we are maximizing $yb$ over $[-1,1] \cap [-R/\sqrt c,R/\sqrt c]$, and so $\alpha = |b|\min(1,R/\sqrt c)$.
  • $\lim_{c \to \infty} \alpha = |b|R'$. This is because the domain $C$ is shrunk to the interval $[-R',R'] \times \{0\}$.
$\endgroup$
4
  • $\begingroup$ Some typos: First line, it should be $(x, y) \in \mathbb{R}^2$. "If $a=0$ ...", it should be $\alpha = |b| \min(1, R/\sqrt c)$. $\endgroup$ Commented Oct 8, 2022 at 12:27
  • $\begingroup$ @RiverLi Fixed. Thanks! $\endgroup$ Commented Oct 9, 2022 at 9:19
  • 1
    $\begingroup$ You forgot to change $\alpha = |a|\min(1,R/\sqrt c)$ to $\alpha = |b|\min(1,R/\sqrt c)$. $\endgroup$ Commented Oct 9, 2022 at 9:58
  • $\begingroup$ @RiverLi For some reason the change wasn't saved. Fixed. $\endgroup$ Commented Oct 9, 2022 at 10:40

1 Answer 1

2
$\begingroup$

We have $$\alpha = \left\{\begin{array}{ll} \sqrt{a^2 + b^2} & \mathrm{if} ~ (a^2 + b^2)R^2 \ge a^2 + cb^2, \\[6pt] R\sqrt{a^2 + b^2/c}& \mathrm{if} ~ a^2c^2 + b^2c \ge (a^2c^2 + b^2)R^2, \\[6pt] |a|\sqrt{\frac{c-R^2}{c-1}} + |b|\sqrt{\frac{R^2 - 1}{c-1}} & \mathrm{otherwise}. \end{array} \right.$$

Proof:

If $a^2 + b^2 = 0$, it is easy. In the following, assume that $a^2 + b^2 > 0$.

We split into three cases:

Case 1: $(a^2 + b^2)R^2 \ge a^2 + cb^2$

By Cauchy-Bunyakovsky-Schwarz inequality, we have $(ax + by)^2 \le (a^2 + b^2)(x^2 + y^2) \le a^2 + b^2$.

On the other hand, letting $x = \frac{a}{\sqrt{a^2+b^2}}$ and $y = \frac{b}{\sqrt{a^2+b^2}}$, we have $x^2 + y^2 = 1$ and $x^2 + cy^2 \le R^2$ and $ax + by = \sqrt{a^2 + b^2}$. The desired result follows.

Case 2: $a^2c^2 + b^2c \ge (a^2c^2 + b^2)R^2$,

By Cauchy-Bunyakovsky-Schwarz inequality, we have $(ax + by)^2 \le (a^2 + b^2/c)(x^2 + cy^2) \le R^2(a^2 + b^2/c)$.

On the other hand, letting $x = \frac{acR}{\sqrt{a^2c^2 + b^2c}}$ and $y = \frac{bR}{\sqrt{a^2c^2 + b^2c}}$, we have $x^2 + y^2 \le 1$ and $x^2 + cy^2 = R^2$ and $ax + by = R\sqrt{a^2 + b^2/c}$. The desired result follows.

Case 3: $(a^2 + b^2)R^2 < a^2 + cb^2$ and $a^2c^2 + b^2c < (a^2c^2 + b^2)R^2$

Clearly, $c \ne 1$. It is easy to prove that $$\alpha = \sup_{0 \le y \le \min(1, R/\sqrt c)} |a|\min(\sqrt{1-y^2}, ~ \sqrt{R^2 - cy^2}) + |b| y.$$

(i) If $c > 1$, from $(a^2 + b^2)R^2 < a^2 + cb^2$ and $a^2c^2 + b^2c < (a^2c^2 + b^2)R^2$, we have $R > 1$ and $c > R^2$ and $$\frac{|b|R}{\sqrt{a^2c^2 + b^2c}} < \sqrt{\frac{R^2-1}{c-1}} < \frac{|b|}{\sqrt{a^2+b^2}} . \tag{1}$$

We have $$\alpha = \sup_{0 \le y \le R/\sqrt c} |a|\min(\sqrt{1-y^2}, ~ \sqrt{R^2 - cy^2}) + |b| y = \max(\alpha_1, ~ \alpha_2)$$ where $$\alpha_1 = \sup_{0 \le y \le \sqrt{(R^2-1)/(c-1)}} |a|\sqrt{1-y^2} + |b| y$$ and $$\alpha_2 = \sup_{ \sqrt{(R^2-1)/(c-1)} \le y \le R/\sqrt c} |a|\sqrt{R^2 - cy^2} + |b| y.$$

Using (1), it is not difficult to prove that $$\alpha_1 = \alpha_2 = |a|\sqrt{\frac{c-R^2}{c-1}} + |b|\sqrt{\frac{R^2 - 1}{c-1}}.$$ (Note: For example, consider $\alpha_1$. Let $f(y) = |a|\sqrt{1-y^2} + |b| y$. Using $\frac{|b|}{\sqrt{a^2 + b^2}} > \sqrt{(R^2-1)/(c-1)}$, we have $f'(y) = - \frac{|a| y}{\sqrt{1 - y^2}} + |b| > 0$ on $[0, \sqrt{(R^2-1)/(c-1)}]$. Thus, $\alpha_1 = f(\sqrt{(R^2-1)/(c-1)}) = |a|\sqrt{\frac{c-R^2}{c-1}} + |b|\sqrt{\frac{R^2 - 1}{c-1}}$.)

The desired result follows.

(ii) If $0 < c < 1$, from $(a^2 + b^2)R^2 < a^2 + cb^2$ and $a^2c^2 + b^2c < (a^2c^2 + b^2)R^2$, we have $R < 1$ and $R^2 > c$ and $$\frac{|b|R}{\sqrt{a^2c^2 + b^2c}} > \sqrt{\frac{R^2-1}{c-1}} > \frac{|b|}{\sqrt{a^2+b^2}} . \tag{2}$$

We have $$\alpha = \sup_{0 \le y \le 1} |a|\min(\sqrt{1-y^2}, ~ \sqrt{R^2 - cy^2}) + |b| y = \max(\alpha_3, ~ \alpha_4)$$ where $$\alpha_3 = \sup_{0 \le y \le \sqrt{(1-R^2)/(1-c)}} |a|\sqrt{R^2 - cy^2} + |b| y,$$ and $$\alpha_4 = \sup_{\sqrt{(1-R^2)/(1-c)} \le y \le 1} |a|\sqrt{1-y^2} + |b| y$$

Using (2), it is not difficult to prove that $$\alpha_3 = \alpha_4 = |a|\sqrt{\frac{c-R^2}{c-1}} + |b|\sqrt{\frac{R^2 - 1}{c-1}}.$$

The desired result follows.

$\phantom{2}$

We are done.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.