3
$\begingroup$

Let $\lambda\vdash n$ denote the integer partition of $n$. Define the product $\mathcal{N}(\lambda)=\lambda_1\lambda_2\cdots\lambda_r$ when $\lambda=(\lambda_1\geq\lambda_2\geq\cdots\geq\lambda_r>0)$.

Let $\gamma$ be the Euler's constant. Lehmer proved that $$\lim_{n\rightarrow\infty}\frac1n\sum_{\lambda\vdash n}\frac1{\mathcal{N}(\lambda)}=e^{-\gamma}.$$

I like to ask:

QUESTION. Does the following limit exist? Or, what is the asymptotic growth of the sum? $$\lim_{n\rightarrow\infty}\sum_{\lambda\vdash n}\frac1{\mathcal{N}(\lambda)^2}.$$

ADDED. Glad to see that Fedor Petrov's answer would (potentially) work for $$\lim_{n\rightarrow\infty}\sum_{\lambda\vdash n}\frac1{\mathcal{N}(\lambda)^r}.$$

$\endgroup$

1 Answer 1

6
$\begingroup$

The limit equals 2. We have $$ \sum_{\lambda\vdash n}\frac1{\mathcal{N}(\lambda)^2}=[x^n]\prod_{k=1}^\infty\frac1{1-x^k/k^2}=\sum_{m=0}^n[x^m]\prod_{k=2}^\infty\frac1{1-x^k/k^2}\\ =b_0+b_1+\ldots+b_n,$$ where $$ \sum b_i x^i=\prod_{k=2}^\infty \frac1{1-x^k/k^2}=:f(x), $$ the standard uniform convergence argument shows that $$\sum b_i=\sup_{0<x<1} f(x)=f(1)=\prod_{k=2}^\infty\frac{k^2}{k^2-1}=2.$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.