3
$\begingroup$

Let $X\in\mathbb{R}^{n\times n}$ be a positive semi-definite matrix and $A\in\mathbb{R}^{n\times n}$ be a stable matrix, i.e. a matrix whose eigenvalues are strictly inside the left-half complex plane. Consider two positive reals $T_1,T_2>0$ such that $T_1\le T_2$.

My question. Does the following inequality hold true $$ \sum_{k\ge 0}e^{A T_1 k} X e^{A^\top T_1 k}\ge \sum_{k\ge 0}e^{A T_2 k} X e^{A^\top T_2 k}, $$ where $e^\cdot$ denotes the matrix exponential?

I'm able to prove the above inequality in the special case $T_2= m T_1$ where $m$ is an integer, however I have no clue about how to prove (or disprove) it in the general case. Thanks in advance for your help!

$\endgroup$
2
  • $\begingroup$ @JochenGlueck: stability is needed to ensure convergence of the matrix series. Otherwise, the inequality does not make much sense... $\endgroup$ Commented Feb 14, 2018 at 19:19
  • $\begingroup$ @ Ludwig Argh... You're right, of course. Sorry for the spam, I'll delete my comment. $\endgroup$ Commented Feb 14, 2018 at 19:22

1 Answer 1

4
$\begingroup$

The answer is no, in general. Here is a counterexample:

Let \begin{align*} X = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \text{and} \quad A = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} - I, \end{align*} where $I \in \mathbb{R}^{2 \times 2}$ denotes the identity matrix. Note that the eigenvalues of $A$ are $-1\pm i$, so $A$ is stable. For every $t \in [0,\infty)$ and every $k \in \mathbb{N}_0$ we have \begin{align*} e^{tkA} = e^{-kt} \begin{pmatrix} \cos(kt) & -\sin(kt) \\ \sin(kt) & \cos(kt) \end{pmatrix}. \end{align*} Choose $y = (0,1) \in \mathbb{R}^2$. Then we have \begin{align*} \langle y, e^{tkA} X e^{tkA^T}y\rangle = \langle y, e^{tkA}X(e^{tkA})^T y\rangle = e^{-2kt}\sin^2(kt), \end{align*} for all $t \in [0,\infty)$ and $k \in \mathbb{N}_0$, so \begin{align*} \langle y, \sum_{k\ge 0} e^{tkA} X e^{tkA^T} y\rangle = \sum_{k \ge 0} e^{-2kt} \sin^2(kt) =: \varphi(t). \end{align*} for all $t \in [0,\infty)$. Now, set $t_1 := \pi$ and $t_2 := \frac{3}{2}\pi$. Then $\varphi(t_1) - \varphi(t_2) = -\varphi(t_2) < 0$, so the matrix \begin{align*} \sum_{k\ge 0} e^{t_1kA} X e^{t_1kA^T} - \sum_{k\ge 0} e^{t_2kA} X e^{t_2kA^T} \end{align*} is not positive semi-definite.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.