3
$\begingroup$

I have reduced solving this question to proving the following identity, for $n, \ell \ge 0$: $$ (n-2\ell+1)^{n-1} \binom{n}{\ell-1} = \\ \frac{1}{2} \sum_{n_1+n_2=n-1}\left[ (n_1+1)^{n_1-1} (n_2-2\ell+1)^{n_2} \binom{n_2}{\ell-1} + \\ \ell \sum_{\ell_1+\ell_2=\ell} \left[(n_1-2\ell_1+1)^{n_1} \binom{n_1}{\ell_1-1} \frac{1}{\ell_1} (n_2-2\ell_2+1)^{n_2} \binom{n_2}{\ell_2-1} \frac{1}{\ell_2}\right] + (n_2+1)^{n_2-1} (n_1-2\ell+1)^{n_1} \binom{n_1}{\ell-1} \right] $$ where $n_1,n_2$ and non-negative integers and $\ell_1, \ell_2$ are positve integers.

I have checked this computationally for small values of $n$ and $\ell$, and it seems to be good.

It is not hypergeometric, but I think it may be "Abel-type" in the sense of this paper.

How could I prove an identity like this?

$\endgroup$

1 Answer 1

1
$\begingroup$

Here is a starter. We can simplify the RHS somewhat.

We obtain \begin{align*} \frac{1}{2}& \sum_{{n_1+n_2=n-1}\atop{n_1,n_2\geq 0}}\left[ (n_1+1)^{n_1-1} (n_2-2\ell+1)^{n_2} \binom{n_2}{\ell-1}\right.\\ &\quad + \ell \sum_{{\ell_1+\ell_2=\ell}\atop{\ell_1,\ell_2\geq 1}} (n_1-2\ell_1+1)^{n_1} \binom{n_1}{\ell_1-1} \frac{1}{\ell_1} (n_2-2\ell_2+1)^{n_2} \binom{n_2}{\ell_2-1} \frac{1}{\ell_2}\\ &\quad\left. + (n_2+1)^{n_2-1} (n_1-2\ell+1)^{n_1} \binom{n_1}{\ell-1} \right]\\ &=\frac{1}{2} \sum_{{n_1+n_2=n-1}\atop{n_1,n_2\geq 0}}\left[ (n_1+1)^{n_1-1} (n_2-2\ell+1)^{n_2} \binom{n_2+1}{\ell}\frac{\ell}{n_2+1}\right.\\ &\quad + \frac{\ell}{(n_1+1)(n_2+1)} \sum_{{\ell_1+\ell_2=\ell}\atop{\ell_1,\ell_2\geq 1}}(n_1-2\ell_1+1)^{n_1} \binom{n_1+1}{\ell_1} (n_2-2\ell_2+1)^{n_2} \binom{n_2+1}{\ell_2}\\ &\quad\left. + (n_2+1)^{n_2-1} (n_1-2\ell+1)^{n_1} \binom{n_1+1}{\ell}\frac{\ell}{n_1+1} \right]\\ &\color{blue}{=\frac{\ell}{2} \sum_{{n_1+n_2=n-1}\atop{n_1,n_2\geq 0}}\frac{1}{(n_1+1)(n_2+1)}}\\ &\quad\quad\color{blue}{\cdot\sum_{{\ell_1+\ell_2=\ell}\atop{\ell_1,\ell_2\geq 0}}(n_1-2\ell_1+1)^{n_1} \binom{n_1+1}{\ell_1} (n_2-2\ell_2+1)^{n_2} \binom{n_2+1}{\ell_2}}\\ \end{align*} In the first step we use the binomial identity $\binom{n}{k-1}\frac{1}{k}=\binom{n+1}{k}\frac{1}{n+1}$. In the second step we collect all terms and start the inner sum with indices $\ell_1,\ell_2\geq 0$.

Note: I could not verify the equality of LHS and RHS for all small values. In case of $n=3,l=2$ the LHS $$(n-2\ell+1)^{n-1} \binom{n}{\ell-1}=(3-4+1)^2\binom{3}{1}=0$$ while the RHS is $2$ if I'm not mistaken.

$\endgroup$
3
  • $\begingroup$ The table of lhs-rhs shows growing discrepancy,$$ \begin{array}{ccccc} -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 2 & 0 \\ 2 & -8 & 12 & -8 & -30 \\ 39 & -61 & 6 & -122 & 195 \\ \end{array}$$ $\endgroup$ Commented Jul 16, 2017 at 21:35
  • $\begingroup$ I omitted a factor of $\binom{n-1}{n_1}$ right after the first summation. That is probably causing the discrepancy. Sorry about that! I did get an answer to my original (linked) question, so that also answers this one. $\endgroup$ Commented Jul 25, 2017 at 22:55
  • $\begingroup$ @Drew: No worries. Good that your question could be answered and thanks for the info. $\endgroup$ Commented Jul 30, 2017 at 19:19

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.