3
$\begingroup$

I'm searching for rather specific counter-example.

Some notation: $A(\alpha|\beta)$ is the sub matrix of $A$ with with rows $\alpha$ and columns $\beta$. $\textrm{det } A(\alpha|\alpha) =: \textrm{det } A(\alpha)$ are the principal minors of $A$. We define $\textrm{det } A(\emptyset)=1$. A matrix $A$ is irreducible if there is no permutation matrix $P$ so that

$$ P^{-1} A P = \begin{bmatrix} E & G \\ 0 & F \end{bmatrix} $$

where $E$ and $F$ are square.

Is there a invertible, irreducible matrix $A \in \mathbb{C}^{4 \times 4}$ with $\textrm{det } A(\alpha) = \textrm{det } ((\overline{A}^{-1})(\alpha))$ for all $\alpha \subseteq \{1,2,3,4\}$ and $\textrm{rank } A([1,2],[3,4]) = 1$?

$\endgroup$
2
  • $\begingroup$ Not sure what irreducible means, but is $\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ an example? All principal minors are $1$. $\endgroup$ Commented Oct 19, 2015 at 22:14
  • $\begingroup$ @DavidSpeyer: Ah, sorry, I will clarify irreducible in the question. $\endgroup$ Commented Oct 19, 2015 at 22:15

1 Answer 1

4
$\begingroup$

The matrix $$A=\frac15\left( \begin{array}{cccc} -1 & 4 & -2 & -2 \\ -4 & 1 & 2 & 2 \\ 2 & 2 & -1 & 4 \\ -2 & -2 & -4 & 1 \\ \end{array} \right)$$is orthogonal, i. e. $A=\overline{A}^{-1}$.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.