5
$\begingroup$

My field of research is coding theory and I am working on cyclic codes. During my research, I tackled an algebraic problem. After some simple definitions, I asked my question. I will appreciate any helpful answer and comment.

Let ‎$‎‎F_{2^{2m}}‎$ ‎denote ‎the ‎finite ‎field ‎of ‎‎$‎{2^{2m}}‎$‎‏ ‎elements‎, where ‎$‎m‎$‎‏ ‎is a‎ ‎positive ‎integer. ‎Let‎ ‎$‎‎‎‎F_{2^{2m}}[x]‎$ ‎denote ‎the polynomial ring in indeterminate ‎$‎x‎$ ‎with ‎coefficients ‎from‎ ‎$‎‎F_{2^{2m}}‎$.‎ ‎

Suppose that ‎$‎f(x)‎$ ‎‎is a polynomial in $‎‎F_{2^{2m}}[x]‎$ ‎and‎ ‎‎$‎f(x)=f_0+f_1x+‎\cdots‎+f_kx^k‎$. We define the conjugate polynomial of ‎$‎f(x)‎$ ‎over‎ ‎$‎‎‎‎F_{2^{2m}}‎$ as follows:‎

‎$‎‎\overline{f(x)}‎={f_0}^{2^m}+f_1^{2^m}x+‎\cdots ‎+f_k^{2^m}x^k.$‎

In particular, if a polynomial is equal to its conjugate polynomial ‎over‎ ‎$‎‎F_{2^{2m}}‎$, then it is called self-conjugate polynomial.‎ ‎

Let ‎$‎n‎$ ‎be ‎an ‎odd ‎positive ‎integer. Since ‎‎$‎gcd(n,‎2^{2m})=1‎$‎, the polynomial ‏‎$‎‎‎x^n+1‎$ ‎can ‎be ‎factorized ‎into ‎distinct ‎irre‎ducible polynomials over ‎$‎‎F_{2^{2m}}‎$.‎ ‎‎

It ‎is ‎obvious ‎that ‎for ‎any ‎monic ‎irreducible ‎polynomial ‎dividing ‎‎$‎x^n+1‎$ ‎over‎‎ ‎$‎‎‎‎F_{2^{2m}}‎$, its conjugate polynomial ‎is ‎also a ‎monic ‎irreducible ‎polynomial ‎dividing ‎‎$‎x^n+1‎$ ‎over‎‎ ‎$‎‎‎‎F_{2^{2m}}‎$. ‎‎ ‎

For ‎example, let ‎‎$‎‎\omega‎‎$ be a‎ ‎primitive ‎element ‎of‎ $‎‎F_4‎$‎. ‎‎‎‎‎The factorization of ‎$‎‎x^5+1$ over $‎‎F_4‎$ is ‎

‎$‎‎x^5+1=(x+1)(x^2+‎\omega ‎x+1)(x^2+‎\omega‎^2x+1)‎‎$‎‎‎‎‎‎

It ‎is ‎obvious ‎that ‎$‎x+1‎$‎‏ ‎is a‎ ‎‎self-conjugate polynomial ‎and ‎‎$x^2+‎\omega ‎x+1‎$ ‎is ‎the‎ conjugate polynomial of ‎$x^2+‎\omega‎^2x+1‎$ ‎over $‎‎‎‎F_4‎$‎‎.‎ ‎‎

For another ‎example, let $‎‎\omega‎‎$ be a‎ ‎primitive ‎element ‎of‎ $‎‎F_{16}‎$‎. ‎The factorization of ‎$‎‎x^{11}+1$ over $‎‎‎‎F_{16}‎‎$ is‎

‎$‎‎x^{11}+1=(x+1)(x^5+‎\omega^5 ‎x^4+x^3+x^2+‎\omega‎^{10}x+1)(x^5+‎\omega^{10} ‎x^4+x^3+x^2+‎\omega‎^{5}x+1)‎‎$

It ‎is ‎obvious ‎that ‎$‎x+1‎$, ‎‎$x^5+‎\omega^5 ‎x^4+x^3+x^2+‎\omega‎^{10}x+1‎$ and ‎$x^5+‎\omega^{10} ‎x^4+x^3+x^2+‎\omega‎^{5}x+1‎$‎ ‎are‎ ‎‎self-conjugate polynomials over $‎‎‎‎F_{16}‎‎$.‎

Because of my researches I think that if $‎f(x)‎$ ‎‎is a self-conjugate monic ‎irreducible ‎polynomial ‎dividing ‎‎$‎x^n+1‎$ ‎over‎‎ ‎$‎‎F_{2^{2m}}‎‎$, then the degree of $‎f(x)‎$ is odd, ‎but I ‎‎could ‎not ‎prove ‎it.‎‎‎ ‎

Is this conjecture true in general? If the answer is no, please give me an example?

$\endgroup$

1 Answer 1

4
$\begingroup$

First, a polynomial $f$ is self-conjugate iff its coefficients belong to the fixed field of the Frobenius $x\mapsto x^{2^m}$, which is $F_{2^m}$.

Second, an $f\in F_{2^m}[x]$ which is irreducible over $F_{2^{2m}}$ must have an odd degree $d$: the splitting field of $f$ is the unique degree $d$ extension of $F_{2^m}$, which is $F_{2^{md}}$; if $d$ were even, then this field is a degree $d/2$ extension of $F_{2^{2m}}$, hence $f$ can’t be irreducible over the latter.

So, yes, any irreducible self-conjugate polynomial has an odd degree, $x^n+1$ has nothing to do with it.

$\endgroup$
0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.