Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 12 additions & 16 deletions examples/basic_tutorials/tutorial_mnist_simple.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,9 @@

# The same set of code can switch the backend with one line
import os
# os.environ['TL_BACKEND'] = 'tensorflow'
os.environ['TL_BACKEND'] = 'tensorflow'
# os.environ['TL_BACKEND'] = 'mindspore'
os.environ['TL_BACKEND'] = 'paddle'
# os.environ['TL_BACKEND'] = 'paddle'
import numpy as np
import tensorlayer as tl
from tensorlayer.layers import Module
Expand All @@ -15,12 +15,11 @@

X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 28, 28, 1))

transform = Compose([Normalize(mean=[127.5], std=[127.5], data_format='HWC')])

transform = Compose([Normalize(mean=[127.5/255.], std=[127.5/255.], data_format='HWC')])

class mnistdataset(Dataset):

def __init__(self, data, label, transform):
def __init__(self, data = X_train, label = y_train ,transform = transform):
self.data = data
self.label = label
self.transform = transform
Expand Down Expand Up @@ -61,24 +60,21 @@ def forward(self, x, foo=None):
out = tl.ops.relu(out)
return out


MLP = CustomModel()

n_epoch = 50
batch_size = 128
print_freq = 2

train_dataset = mnistdataset(data=X_train, label=y_train, transform=transform)
train_dataset = tl.dataflow.FromGenerator(
train_dataset, output_types=[tl.float32, tl.int64], column_names=['data', 'label']
)
train_loader = tl.dataflow.Dataloader(train_dataset, batch_size=batch_size, shuffle=True)

train_weights = MLP.trainable_weights
optimizer = tl.optimizers.Momentum(0.05, 0.9)
optimizer = tl.optimizers.Momentum(0.001, 0.9)
metric = tl.metric.Accuracy()
model = tl.models.Model(
network=MLP, loss_fn=tl.cost.softmax_cross_entropy_with_logits, optimizer=optimizer, metrics=metric
)
train_dataset = mnistdataset(data = X_train, label = y_train ,transform = transform)
train_dataset = tl.dataflow.FromGenerator(train_dataset, output_types=[tl.float32, tl.int64], column_names=['data', 'label'])
train_loader = tl.dataflow.Dataloader(train_dataset, batch_size=batch_size, shuffle=True)

model = tl.models.Model(network=MLP, loss_fn=tl.cost.softmax_cross_entropy_with_logits, optimizer=optimizer, metrics=metric)
model.train(n_epoch=n_epoch, train_dataset=train_loader, print_freq=print_freq, print_train_batch=False)
model.save_weights('./model.npz', format='npz_dict')
model.load_weights('./model.npz', format='npz_dict')
model.load_weights('./model.npz', format='npz_dict')